Answer: 190 Step-by-step explanation: a4=13 a7=29 a+3d=13 a+7d=29 by solving, d =4 and a=1 S10= 10/2(2×1 +9(4)) = 5(2+36) =5(38) = 190 Reply
EXPLANATION. 4th term of an A.P. = 13. 8th term of an A.P. = 29. As we know that, General term of an A.P. ⇒ Tₙ = a + (n – 1)d. ⇒ T₄ = a + (4 – 1)d. ⇒ T₄ = a + 3d. ⇒ a + 3d = 13. ⇒(1). ⇒ T₈ = a + (8 – 1)d. ⇒ T₈ = a + 7d. ⇒ a + 7d = 29. ⇒(2). From equation (1) & (2), we get. ⇒ a + 3d = 13. ⇒ a + 7d = 29. We get, ⇒ -4d = -16. ⇒ 4d = 16. ⇒ d = 4. Put the value of d = 4 in equation (1), we get. ⇒ a + 3(4) = 13. ⇒ a + 12 = 13. ⇒ a = 13 – 12. ⇒ a = 1. First term = a = 1. Common difference = d = b – a = 4. As we know that, Sum of nth term of an A.P. ⇒ Sₙ = n/2[2a + (n – 1)d]. ⇒ S₁₀ = 10/2[2(1) + (10 – 1)4]. ⇒ S₁₀ = 5[2 + 9(4)]. ⇒ S₁₀ = 5[2 + 36]. ⇒ S₁₀ = 5[38]. ⇒ S₁₀ = 190. MORE INFORMATION. Supposition of an A.P. (1) = Three terms as : a – d, a, a + d. (2) = Four terms as : = a – 3d, a – d, a + d, a + 3d. (3) = Five terms as : a – 2d, a – d, a, a + d, a + 2d. Reply
Answer:
190
Step-by-step explanation:
a4=13
a7=29
a+3d=13
a+7d=29
by solving, d =4 and a=1
S10= 10/2(2×1 +9(4))
= 5(2+36)
=5(38)
= 190
EXPLANATION.
4th term of an A.P. = 13.
8th term of an A.P. = 29.
As we know that,
General term of an A.P.
⇒ Tₙ = a + (n – 1)d.
⇒ T₄ = a + (4 – 1)d.
⇒ T₄ = a + 3d.
⇒ a + 3d = 13. ⇒(1).
⇒ T₈ = a + (8 – 1)d.
⇒ T₈ = a + 7d.
⇒ a + 7d = 29. ⇒(2).
From equation (1) & (2), we get.
⇒ a + 3d = 13.
⇒ a + 7d = 29.
We get,
⇒ -4d = -16.
⇒ 4d = 16.
⇒ d = 4.
Put the value of d = 4 in equation (1), we get.
⇒ a + 3(4) = 13.
⇒ a + 12 = 13.
⇒ a = 13 – 12.
⇒ a = 1.
First term = a = 1.
Common difference = d = b – a = 4.
As we know that,
Sum of nth term of an A.P.
⇒ Sₙ = n/2[2a + (n – 1)d].
⇒ S₁₀ = 10/2[2(1) + (10 – 1)4].
⇒ S₁₀ = 5[2 + 9(4)].
⇒ S₁₀ = 5[2 + 36].
⇒ S₁₀ = 5[38].
⇒ S₁₀ = 190.
MORE INFORMATION.
Supposition of an A.P.
(1) = Three terms as : a – d, a, a + d.
(2) = Four terms as : = a – 3d, a – d, a + d, a + 3d.
(3) = Five terms as : a – 2d, a – d, a, a + d, a + 2d.