Answer :– Sum of zeroes = 1/3 Product of zeroes = -4/3 Given :– 3x² – x – 4 is a quadratic polynomial. To Find :– The sum and product of zeroes of the given quadratic polynomial . Step By Step Explanation :– Polynomial => 3x² – x – 4 As we know ⤵ [tex] \bigstar\boxed{ \underline{ \tt{ \pink{Sum \: of \: zeroes = \cfrac{ – b}{a} }}}}[/tex] [tex] \bigstar \boxed{ \underline{ \tt{ \purple{Product \: of \: zeroes = \cfrac{c}{a} }}}}[/tex] So let’s do it !! Sum of zeroes will be ⤵ [tex] \sf\: Sum \: of \: zeroes = \cfrac{ – ( – 1)}{3} \implies \cfrac{1}{3} [/tex] Product of zeroes will be ⤵ [tex] \sf \: Product \: of \: zeroes = \cfrac{ – 4}{3} [/tex] Therefore sum of zeroes => 1/3 and product of zeroes => -4/3 __________________________ Reply
Given Roots of quadratic polynomials are [tex]\frac{4}{3},-1[/tex] explanation: Since we have given that [tex]3x^2-x-4[/tex] First we will find the zeroes of the quadratic polynomial. We will use “Split the middle terms”: [tex]3x^2-x-4=0\\\\3x^2+3x-4x-4=0\\\\3x(x+1)-4(x+1)=0\\\\(3x-4)(x+1)=0\\\\x=\frac{4}{3},-1[/tex] Now, Let, [tex]\alpha =\frac{4}{3},\beta =-1[/tex] Now, we will verify the relationship between the zeroes and coefficient. Sum of zeroes is given by [tex]\alpha +\beta =\frac{4}{3}-1=\frac{1}{3}\\\\\alpha \beta =-1\times \frac{4}{3}=\frac{-4}{3}\\and\\\\\alpha +\beta =\frac{-b}{a}=\frac{1}{3},\alpha\beta =\frac{c}{a}=\frac{-4}{3}[/tex] Hence, verified. Roots of quadratic polynomials are [tex]\frac{4}{3},-1[/tex] Reply
Answer :–
Given :–
To Find :–
Step By Step Explanation :–
Polynomial => 3x² – x – 4
As we know ⤵
[tex] \bigstar\boxed{ \underline{ \tt{ \pink{Sum \: of \: zeroes = \cfrac{ – b}{a} }}}}[/tex]
[tex] \bigstar \boxed{ \underline{ \tt{ \purple{Product \: of \: zeroes = \cfrac{c}{a} }}}}[/tex]
So let’s do it !!
Sum of zeroes will be ⤵
[tex] \sf\: Sum \: of \: zeroes = \cfrac{ – ( – 1)}{3} \implies \cfrac{1}{3} [/tex]
Product of zeroes will be ⤵
[tex] \sf \: Product \: of \: zeroes = \cfrac{ – 4}{3} [/tex]
Therefore sum of zeroes => 1/3 and product of zeroes => -4/3
__________________________
Given
Roots of quadratic polynomials are [tex]\frac{4}{3},-1[/tex]
explanation:
Since we have given that
[tex]3x^2-x-4[/tex]
First we will find the zeroes of the quadratic polynomial.
We will use “Split the middle terms”:
[tex]3x^2-x-4=0\\\\3x^2+3x-4x-4=0\\\\3x(x+1)-4(x+1)=0\\\\(3x-4)(x+1)=0\\\\x=\frac{4}{3},-1[/tex]
Now,
Let, [tex]\alpha =\frac{4}{3},\beta =-1[/tex]
Now, we will verify the relationship between the zeroes and coefficient.
Sum of zeroes is given by
[tex]\alpha +\beta =\frac{4}{3}-1=\frac{1}{3}\\\\\alpha \beta =-1\times \frac{4}{3}=\frac{-4}{3}\\and\\\\\alpha +\beta =\frac{-b}{a}=\frac{1}{3},\alpha\beta =\frac{c}{a}=\frac{-4}{3}[/tex]
Hence, verified.
Roots of quadratic polynomials are [tex]\frac{4}{3},-1[/tex]