Find the square root of the following surds 12+2root 35 8-2root 15 31-4root 21 30+12root 6 About the author Brielle
Given: [tex]\bf 1. \: 12+2\sqrt{35}[/tex] [tex]\bf 2. \: 8-2\sqrt{15}[/tex] [tex]\bf 3. \: 31-4\sqrt{21}[/tex] [tex]\bf 4. \: 30+12\sqrt{6}[/tex] What To Find: We have to find – The square root of the given surds. How To Find: To find, we have to – First, write in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex]. Next. square the sides by using identities. Then, find the square roots of the expression. Answer 1: [tex]\sf 12+2\sqrt{35}[/tex] Take it in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex] and write it as, [tex]\sf \to \sqrt{a}+\sqrt{b} = \sqrt{12+2\sqrt{35}}[/tex] Square both sides, [tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = \bigg(\sqrt{12+2\sqrt{35}}\bigg)^2[/tex] Square the LHS by using the identity, [tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = a + b + 2\sqrt{ab}[/tex] Square the RHS by cancelling the surds and powers, [tex]\sf \to\bigg(\sqrt{12+2\sqrt{35}}\bigg)^2 = 12+2\sqrt{35}[/tex] After squaring both sides, [tex]\sf \to a + b + 2\sqrt{ab} = 12 + 2\sqrt{35}[/tex] Let’s take – a + b = 12 2√ab = 2√35 Cancel 2 from both sides, √ab = √35 On squaring, (√ab)² = (√35)² ab – 35 By manual guess, a + b = 12 = 7 + 5 ab = 35 = 7 × 5 ∴ Thus, the answer is:- [tex]\bf \sqrt{7}+\sqrt{5}[/tex]. Answer 2: [tex]\sf 8-2\sqrt{15}[/tex] Take it in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex] and write it as, [tex]\sf \to \sqrt{a}+\sqrt{b} = \sqrt{8-2\sqrt{15}}[/tex] Square both sides, [tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = \bigg(\sqrt{8-2\sqrt{15}}\bigg)^2[/tex] Square the LHS by using the identity, [tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = a + b + 2\sqrt{ab}[/tex] Square the RHS by cancelling the surds and powers, [tex]\sf \to\bigg(\sqrt{8-2\sqrt{15}}\bigg)^2 = 8-2\sqrt{15}[/tex] After squaring both sides, [tex]\sf \to a + b + 2\sqrt{ab} = 8-2\sqrt{15}[/tex] Let’s take – a + b = 8 2√ab = 2√15 Cancel 2 from both sides, √ab = √15 On squaring, (√ab)² = (√15) ab = 15 By manual guess, a + b = 8 = 5 + 3 ab = 15 = 5 × 3 ∴ Thus, the answer is:- [tex]\bf \sqrt{5} + \sqrt{3}[/tex] Answer 3: [tex]\sf 31-4\sqrt{21}[/tex] Take it in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex] and write it as, [tex]\sf \to \sqrt{a}+\sqrt{b} = \sqrt{31-4\sqrt{21}}[/tex] Square both sides, [tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = \bigg(\sqrt{31-4\sqrt{21}}\bigg)^2[/tex] Square the LHS by using the identity, [tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = a + b + 2\sqrt{ab}[/tex] Square the RHS by cancelling the surds and powers, [tex]\sf \to\bigg(\sqrt{31-4\sqrt{21}}\bigg)^2 = 31-4\sqrt{21}[/tex] After squaring both sides, [tex]\sf \to a + b + 2\sqrt{ab} = 31-4\sqrt{21}[/tex] Let’s take – a + b = 31 2√ab = 4√21 Cancel 2 from both sides, √ab = 2√21 Squaring both sides, (ab)² = (2√21)² ab = 84 By manual guess, a + b = 31 = 28 + 3 ab = 84 = 28 × 3 ∴ Thus, the answer is:- [tex]\bf \sqrt{28}+\sqrt{3}[/tex] or [tex]\bf 2\sqrt{7} + \sqrt{3}[/tex] Answer 4: [tex]\sf 30+12\sqrt{6}[/tex] Take it in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex] and write it as, [tex]\sf \to \sqrt{a}+\sqrt{b} = \sqrt{30+12\sqrt{6}}[/tex] Square both sides, [tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = \bigg(\sqrt{30+2\sqrt{6}}\bigg)^2[/tex] Square the LHS by using the identity, [tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = a + b + 2\sqrt{ab}[/tex] Square the RHS by cancelling the surds and powers, [tex]\sf \to\bigg(\sqrt{30+12\sqrt{6}}\bigg)^2 = 30+12\sqrt{6}[/tex] After squaring both sides, [tex]\sf \to a + b + 2\sqrt{ab} = 30+12\sqrt{6}[/tex] Let’s take – a + b = 30 2√ab = 12√6 Cancel 2 from both sides, ab = 6√6 Squaring both sides, (√ab)² = (6√6)² ab = 216 By manual guess, a + b = 30 = 12 + 18 ab = 216 = 28 × 3 ∴ Thus, the answer is:- [tex]\bf \sqrt{18} + \sqrt{12}[/tex] or [tex]\bf 3\sqrt{2} + 2\sqrt{3}[/tex] Reply
Given:
[tex]\bf 1. \: 12+2\sqrt{35}[/tex]
[tex]\bf 2. \: 8-2\sqrt{15}[/tex]
[tex]\bf 3. \: 31-4\sqrt{21}[/tex]
[tex]\bf 4. \: 30+12\sqrt{6}[/tex]
What To Find:
We have to find –
How To Find:
To find, we have to –
Answer 1:
[tex]\sf 12+2\sqrt{35}[/tex]
Take it in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex] and write it as,
[tex]\sf \to \sqrt{a}+\sqrt{b} = \sqrt{12+2\sqrt{35}}[/tex]
Square both sides,
[tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = \bigg(\sqrt{12+2\sqrt{35}}\bigg)^2[/tex]
Square the LHS by using the identity,
[tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = a + b + 2\sqrt{ab}[/tex]
Square the RHS by cancelling the surds and powers,
[tex]\sf \to\bigg(\sqrt{12+2\sqrt{35}}\bigg)^2 = 12+2\sqrt{35}[/tex]
After squaring both sides,
[tex]\sf \to a + b + 2\sqrt{ab} = 12 + 2\sqrt{35}[/tex]
Let’s take –
Cancel 2 from both sides,
On squaring,
By manual guess,
∴ Thus, the answer is:- [tex]\bf \sqrt{7}+\sqrt{5}[/tex].
Answer 2:
[tex]\sf 8-2\sqrt{15}[/tex]
Take it in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex] and write it as,
[tex]\sf \to \sqrt{a}+\sqrt{b} = \sqrt{8-2\sqrt{15}}[/tex]
Square both sides,
[tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = \bigg(\sqrt{8-2\sqrt{15}}\bigg)^2[/tex]
Square the LHS by using the identity,
[tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = a + b + 2\sqrt{ab}[/tex]
Square the RHS by cancelling the surds and powers,
[tex]\sf \to\bigg(\sqrt{8-2\sqrt{15}}\bigg)^2 = 8-2\sqrt{15}[/tex]
After squaring both sides,
[tex]\sf \to a + b + 2\sqrt{ab} = 8-2\sqrt{15}[/tex]
Let’s take –
Cancel 2 from both sides,
On squaring,
By manual guess,
∴ Thus, the answer is:- [tex]\bf \sqrt{5} + \sqrt{3}[/tex]
Answer 3:
[tex]\sf 31-4\sqrt{21}[/tex]
Take it in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex] and write it as,
[tex]\sf \to \sqrt{a}+\sqrt{b} = \sqrt{31-4\sqrt{21}}[/tex]
Square both sides,
[tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = \bigg(\sqrt{31-4\sqrt{21}}\bigg)^2[/tex]
Square the LHS by using the identity,
[tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = a + b + 2\sqrt{ab}[/tex]
Square the RHS by cancelling the surds and powers,
[tex]\sf \to\bigg(\sqrt{31-4\sqrt{21}}\bigg)^2 = 31-4\sqrt{21}[/tex]
After squaring both sides,
[tex]\sf \to a + b + 2\sqrt{ab} = 31-4\sqrt{21}[/tex]
Let’s take –
Cancel 2 from both sides,
Squaring both sides,
By manual guess,
∴ Thus, the answer is:- [tex]\bf \sqrt{28}+\sqrt{3}[/tex] or [tex]\bf 2\sqrt{7} + \sqrt{3}[/tex]
Answer 4:
[tex]\sf 30+12\sqrt{6}[/tex]
Take it in the form of [tex]\sf \sqrt{a}+\sqrt{b}[/tex] and write it as,
[tex]\sf \to \sqrt{a}+\sqrt{b} = \sqrt{30+12\sqrt{6}}[/tex]
Square both sides,
[tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = \bigg(\sqrt{30+2\sqrt{6}}\bigg)^2[/tex]
Square the LHS by using the identity,
[tex]\sf \to (\sqrt{a}+\sqrt{b})^2 = a + b + 2\sqrt{ab}[/tex]
Square the RHS by cancelling the surds and powers,
[tex]\sf \to\bigg(\sqrt{30+12\sqrt{6}}\bigg)^2 = 30+12\sqrt{6}[/tex]
After squaring both sides,
[tex]\sf \to a + b + 2\sqrt{ab} = 30+12\sqrt{6}[/tex]
Let’s take –
Cancel 2 from both sides,
Squaring both sides,
By manual guess,
∴ Thus, the answer is:- [tex]\bf \sqrt{18} + \sqrt{12}[/tex] or [tex]\bf 3\sqrt{2} + 2\sqrt{3}[/tex]