[tex]\bf:\longmapsto\:The \: point \: on \: x – axis \: be \: P \: (-1,0)[/tex]
Additional Information :-
Section Formula
Section Formula is used to find the co ordinates of the point(Q) Which divides the line segment joining the points (B) and (C) internally in the ratio m : n
[tex]\large\underline{\sf{Solution-}}[/tex]
Let the point on x – axis be (x, 0) which is equidistant from the points A (- 3, 4) and B (1, – 4).
We know,
Distance between two points A and B is given by
[tex]\bf\implies \:AB = \sqrt{ {(x_2-x_1)}^{2} + {(y_2-y_1)}^{2} }[/tex]
[tex]\sf \: where \: coordinates \: of \: A \: and \: B \: are \: (x_1,y_1) \: and \: (x_2,y_2)[/tex]
Now,
According to statement,
[tex]\rm :\longmapsto\:PA = PB[/tex]
On squaring both sides, we get
[tex]\rm :\longmapsto\:PA^{2} = PB^{2} [/tex]
[tex]\rm :\longmapsto\: {(x + 3)}^{2} + {(0- 4)}^{2} = {(x – 1)}^{2} + {(0 + 4)}^{2} [/tex]
[tex]\rm :\longmapsto\: {x}^{2} + 9 + 6x + 16 = {x}^{2} + 1 – 2x + 16 [/tex]
[tex]\rm :\longmapsto\:9 + 6x= 1 – 2x[/tex]
[tex]\rm :\longmapsto\:6x + 2x= 1 -9[/tex]
[tex]\rm :\longmapsto\:8x = – 8[/tex]
[tex]\bf\implies \:x = – 1[/tex]
Hence,
[tex]\bf:\longmapsto\:The \: point \: on \: x – axis \: be \: P \: (-1,0)[/tex]
Additional Information :-
Section Formula
Section Formula is used to find the co ordinates of the point(Q) Which divides the line segment joining the points (B) and (C) internally in the ratio m : n
[tex]{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n}, \dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}[/tex]
Midpoint Formula :-
Midpoint Formula is used to find the midpoint of line segment joining two points
[tex]{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{x_2 + x_1}{2}, \dfrac{y_2 + y_1}{2}\Bigg) \quad}}}}[/tex]