Find the perimeter of the triangle whose vertices are (-2, 1), (4, 6) and (6, -3). About the author Abigail
Answer: [tex] \sqrt{80} + \sqrt{61} + \sqrt{85} [/tex] Step-by-step explanation: Perimeter means sum of all Sides. So, distance between two points (a,b) and (c,d) is defined as [tex] \sqrt{ {(c – a)}^{2} + \: {(d – b)}^{2} } [/tex] Assumptions: Let A = (-2,1) , B = (4,6) , C = (6,-3) and AB , BC, CA be the Sides of the Triangle Finding distance between them: AB = [tex] \sqrt{ {(4 + 2)}^{2} + {(6 – 1)}^{2} } [/tex] = [tex] \sqrt{36 + 25} [/tex] = [tex] \sqrt{61} [/tex] BC = [tex] \sqrt{ {(6 – 4)}^{2} + {( – 3 – 6)}^{2} } [/tex] = [tex] \sqrt{4 + 81} [/tex] = [tex] \sqrt{85} [/tex] CA = [tex] \sqrt{ {(6 + 2)}^{2} + {( – 3 – 1)}^{2} } [/tex] = [tex] \sqrt{64 + 16} [/tex] = [tex] \sqrt{80} [/tex] Result: Perimeter = Sum of all sides = [tex] \sqrt{80} + \sqrt{61} + \sqrt{85} [/tex] Reply
Answer: The perimeter of a triangle is the sum of the lengths of its three sides. To find the length of each side, we use distance formula. Let A = (-2, 1) Let B = (4, 6) Let C = (6, -3) Distance AB = [tex]\sqrt{(4+2)^{2} +(6-1)^{2} } = \sqrt{36+25} = \sqrt{61}[/tex] units Distance BC = [tex]\sqrt{(6-4)^{2}+(-3+6)^{2}} = \sqrt{4+9} = \sqrt{13}[/tex] units Distance CA = [tex]\sqrt{(6+2)^2+(-3-1)^2} = \sqrt{64+16} = \sqrt{80}[/tex] units The required answer is the sum of these three values: [tex]\sqrt{61} + \sqrt{13} + \sqrt{80}[/tex] units Do mark as brainliest if it helped! Reply
Answer:
[tex] \sqrt{80} + \sqrt{61} + \sqrt{85} [/tex]
Step-by-step explanation:
Perimeter means sum of all Sides.
So, distance between two points (a,b) and (c,d) is defined as
[tex] \sqrt{ {(c – a)}^{2} + \: {(d – b)}^{2} } [/tex]
Assumptions:
Let A = (-2,1) , B = (4,6) , C = (6,-3) and AB , BC, CA be the Sides of the Triangle
Finding distance between them:
AB = [tex] \sqrt{ {(4 + 2)}^{2} + {(6 – 1)}^{2} } [/tex]
= [tex] \sqrt{36 + 25} [/tex]
= [tex] \sqrt{61} [/tex]
BC = [tex] \sqrt{ {(6 – 4)}^{2} + {( – 3 – 6)}^{2} } [/tex]
= [tex] \sqrt{4 + 81} [/tex]
= [tex] \sqrt{85} [/tex]
CA = [tex] \sqrt{ {(6 + 2)}^{2} + {( – 3 – 1)}^{2} } [/tex]
= [tex] \sqrt{64 + 16} [/tex]
= [tex] \sqrt{80} [/tex]
Result:
Perimeter = Sum of all sides
= [tex] \sqrt{80} + \sqrt{61} + \sqrt{85} [/tex]
Answer:
The perimeter of a triangle is the sum of the lengths of its three sides.
To find the length of each side, we use distance formula.
Let A = (-2, 1)
Let B = (4, 6)
Let C = (6, -3)
Distance AB = [tex]\sqrt{(4+2)^{2} +(6-1)^{2} } = \sqrt{36+25} = \sqrt{61}[/tex] units
Distance BC = [tex]\sqrt{(6-4)^{2}+(-3+6)^{2}} = \sqrt{4+9} = \sqrt{13}[/tex] units
Distance CA = [tex]\sqrt{(6+2)^2+(-3-1)^2} = \sqrt{64+16} = \sqrt{80}[/tex] units
The required answer is the sum of these three values:
[tex]\sqrt{61} + \sqrt{13} + \sqrt{80}[/tex] units
Do mark as brainliest if it helped!