find the maximum and minimum values of the function for(x) =2x^2-6x+3مهاباد (2) About the author Faith
[tex]\large\underline{\sf{Solution-}}[/tex] Given that [tex]\rm :\longmapsto\:f(x) = {2x}^{2} – 6x + 3[/tex] On differentiating both sides w. r. t. x, we get [tex]\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx}( {2x}^{2} – 6x + 3)[/tex] [tex]\rm :\longmapsto\:f'(x) = 2\dfrac{d}{dx} {x}^{2} – 6\dfrac{d}{dx}x + \dfrac{d}{dx}3[/tex] [tex]\rm :\longmapsto\:f'(x) = 4x – 6 – – – (1)[/tex] For maxima and minima, [tex]\rm :\longmapsto\:Put \: f'(x) = 0[/tex] [tex]\rm :\longmapsto\:4x – 6 = 0[/tex] [tex]\rm :\longmapsto\:4x = 6[/tex] [tex]\rm :\implies\:x = \dfrac{3}{2} – – – (2)[/tex] Now, from equation (1), we have [tex]\rm :\longmapsto\:f'(x) = 4x – 6[/tex] On differentiating both sides w. r. t. x, we get [tex]\rm :\longmapsto\:\dfrac{d}{dx}f'(x) =\dfrac{d}{dx}( 4x – 6)[/tex] [tex]\rm :\longmapsto\:f”(x) = 4 > 0[/tex] [tex]\bf\implies \:f(x) \: is \: minimum \: at \: x = \dfrac{3}{2} [/tex] and [tex]\rm :\longmapsto\:Minimum \: value \: is \: f\bigg(\dfrac{3}{2} \bigg) [/tex] [tex] \rm \: = \: \: 2 {\bigg(\dfrac{3}{2} \bigg) }^{2} – 6 \times \dfrac{3}{2} + 3[/tex] [tex] \rm \: = \: \: 2 \times \dfrac{9}{4} – 9 + 3[/tex] [tex] \rm \: = \: \:\dfrac{9}{2} – 6[/tex] [tex] \rm \: = \: \:\dfrac{9 – 12}{2}[/tex] [tex] \rm \: = \: \:\dfrac{ – 3}{2}[/tex] Basic Concept Used :- HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION Let given function be f(x). Differentiate the given function, we get f'(x) let f'(x) = 0 and find critical point say x = a. Then find the second derivative, i.e. f”(x). Apply the critical point in the second derivative. The function f (x) is maximum when f”(a) < 0. The function f (x) is minimum when f”(a) > 0. Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that
[tex]\rm :\longmapsto\:f(x) = {2x}^{2} – 6x + 3[/tex]
On differentiating both sides w. r. t. x, we get
[tex]\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx}( {2x}^{2} – 6x + 3)[/tex]
[tex]\rm :\longmapsto\:f'(x) = 2\dfrac{d}{dx} {x}^{2} – 6\dfrac{d}{dx}x + \dfrac{d}{dx}3[/tex]
[tex]\rm :\longmapsto\:f'(x) = 4x – 6 – – – (1)[/tex]
For maxima and minima,
[tex]\rm :\longmapsto\:Put \: f'(x) = 0[/tex]
[tex]\rm :\longmapsto\:4x – 6 = 0[/tex]
[tex]\rm :\longmapsto\:4x = 6[/tex]
[tex]\rm :\implies\:x = \dfrac{3}{2} – – – (2)[/tex]
Now, from equation (1), we have
[tex]\rm :\longmapsto\:f'(x) = 4x – 6[/tex]
On differentiating both sides w. r. t. x, we get
[tex]\rm :\longmapsto\:\dfrac{d}{dx}f'(x) =\dfrac{d}{dx}( 4x – 6)[/tex]
[tex]\rm :\longmapsto\:f”(x) = 4 > 0[/tex]
[tex]\bf\implies \:f(x) \: is \: minimum \: at \: x = \dfrac{3}{2} [/tex]
and
[tex]\rm :\longmapsto\:Minimum \: value \: is \: f\bigg(\dfrac{3}{2} \bigg) [/tex]
[tex] \rm \: = \: \: 2 {\bigg(\dfrac{3}{2} \bigg) }^{2} – 6 \times \dfrac{3}{2} + 3[/tex]
[tex] \rm \: = \: \: 2 \times \dfrac{9}{4} – 9 + 3[/tex]
[tex] \rm \: = \: \:\dfrac{9}{2} – 6[/tex]
[tex] \rm \: = \: \:\dfrac{9 – 12}{2}[/tex]
[tex] \rm \: = \: \:\dfrac{ – 3}{2}[/tex]
Basic Concept Used :-
HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION
Let given function be f(x).
Differentiate the given function, we get f'(x)
let f'(x) = 0 and find critical point say x = a.
Then find the second derivative, i.e. f”(x).
Apply the critical point in the second derivative.
The function f (x) is maximum when f”(a) < 0.
The function f (x) is minimum when f”(a) > 0.