find the maximum and minimum values of the function for(x) =2x^2-6x+3
مهاباد (2)​

find the maximum and minimum values of the function for(x) =2x^2-6x+3
مهاباد (2)​

About the author
Faith

1 thought on “find the maximum and minimum values of the function for(x) =2x^2-6x+3<br />مهاباد (2)​”

  1. [tex]\large\underline{\sf{Solution-}}[/tex]

    Given that

    [tex]\rm :\longmapsto\:f(x) = {2x}^{2} – 6x + 3[/tex]

    On differentiating both sides w. r. t. x, we get

    [tex]\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx}( {2x}^{2} – 6x + 3)[/tex]

    [tex]\rm :\longmapsto\:f'(x) = 2\dfrac{d}{dx} {x}^{2} – 6\dfrac{d}{dx}x + \dfrac{d}{dx}3[/tex]

    [tex]\rm :\longmapsto\:f'(x) = 4x – 6 – – – (1)[/tex]

    For maxima and minima,

    [tex]\rm :\longmapsto\:Put \: f'(x) = 0[/tex]

    [tex]\rm :\longmapsto\:4x – 6 = 0[/tex]

    [tex]\rm :\longmapsto\:4x = 6[/tex]

    [tex]\rm :\implies\:x = \dfrac{3}{2} – – – (2)[/tex]

    Now, from equation (1), we have

    [tex]\rm :\longmapsto\:f'(x) = 4x – 6[/tex]

    On differentiating both sides w. r. t. x, we get

    [tex]\rm :\longmapsto\:\dfrac{d}{dx}f'(x) =\dfrac{d}{dx}( 4x – 6)[/tex]

    [tex]\rm :\longmapsto\:f”(x) = 4 > 0[/tex]

    [tex]\bf\implies \:f(x) \: is \: minimum \: at \: x = \dfrac{3}{2} [/tex]

    and

    [tex]\rm :\longmapsto\:Minimum \: value \: is \: f\bigg(\dfrac{3}{2} \bigg) [/tex]

    [tex] \rm \: = \: \: 2 {\bigg(\dfrac{3}{2} \bigg) }^{2} – 6 \times \dfrac{3}{2} + 3[/tex]

    [tex] \rm \: = \: \: 2 \times \dfrac{9}{4} – 9 + 3[/tex]

    [tex] \rm \: = \: \:\dfrac{9}{2} – 6[/tex]

    [tex] \rm \: = \: \:\dfrac{9 – 12}{2}[/tex]

    [tex] \rm \: = \: \:\dfrac{ – 3}{2}[/tex]

    Basic Concept Used :-

    HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION

    Let given function be f(x).

    Differentiate the given function, we get f'(x)

    let f'(x) = 0 and find critical point say x = a.

    Then find the second derivative, i.e. f”(x).

    Apply the critical point in the second derivative.

    The function f (x) is maximum when f”(a) < 0.

    The function f (x) is minimum when f”(a) > 0.

    Reply

Leave a Comment