find the length of a rectangular garden whose area is 216 square meter and breadth 12 m About the author Remi
Answer: area of a rectangle = l× b 216 m² = l× 12m 216m² / 12 m = l 16 m = l therefore the length of the rectangular garden is 16 m Reply
•Question:- Find the length of a rectangular garden whose area is 216 square meter and breadth 12 m. Given:– Area of rectangle is 216 m² Breadth of rectangle is 12m To find:– Length of rectangle [tex] \huge{ \sf{ \underline{ \overline{ \mid{ \color{maroon}{Solution:- } \mid}}}}}[/tex] Let the length be l ⇝Area of rectangle = length ×breadth ⇝ L×12 m = 216m² [tex] \bf \: ⇝ \sf{l} \: = \frac{216}{12} m[/tex] ⇝l= 18m [tex] \large{ \boxed{ \mathfrak{ \green{ \underline{Therefore \: the \: measure \: of \: length \: is \: 18m}}}}}[/tex] ━━━━━━━━━━━━━━━━━━━━ [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \huge{ \sf{ \underline{ \purple{Verification:- }}}}[/tex] By keeping the value of length we will check our answer [tex]area \: = \: length \times breadth[/tex] [tex]⇝18 \: m \times 12 \: m[/tex] [tex]⇝216 {m}^{2} [/tex] Hence Proved✔ ━━━━━━━━━━━━━━━━━━━━━ Step-by-step explanation: [tex]⠀\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex] [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ⠀\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}[/tex] Reply
Answer:
area of a rectangle = l× b
216 m² = l× 12m
216m² / 12 m = l
16 m = l
therefore the length of the rectangular garden is 16 m
•Question:-
Given:–
To find:–
[tex] \huge{ \sf{ \underline{ \overline{ \mid{ \color{maroon}{Solution:- } \mid}}}}}[/tex]
⇝Area of rectangle = length ×breadth
⇝ L×12 m = 216m²
[tex] \bf \: ⇝ \sf{l} \: = \frac{216}{12} m[/tex]
⇝l= 18m
[tex] \large{ \boxed{ \mathfrak{ \green{ \underline{Therefore \: the \: measure \: of \: length \: is \: 18m}}}}}[/tex]
━━━━━━━━━━━━━━━━━━━━
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \huge{ \sf{ \underline{ \purple{Verification:- }}}}[/tex]
[tex]area \: = \: length \times breadth[/tex]
[tex]⇝18 \: m \times 12 \: m[/tex]
[tex]⇝216 {m}^{2} [/tex]
Hence Proved✔
━━━━━━━━━━━━━━━━━━━━━
Step-by-step explanation:
[tex]⠀\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ⠀\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}[/tex]