Find the length of a conductor having resistance 2 ohms , resistivity 1.6 × 10^-8 ohms and radius 1× 10^-3 m. [tex]ello \: kitu[/tex] About the author Arya
Length of the conductor = 392.5m Step-by-step explanation: [tex] \boxed {R = \frac{ \rho \: l}{A} } \\R \rightarrow Resistance,\\\rho \rightarrow Resistivity, l\rightarrow Length ,A\rightarrow Area\\ \boxed{l = \frac{RA}{ \rho} } \\ A = \: \pi {r}^{2} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 3.14 \times (1 \times {10}^{ – 3} )²\\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 3.14 \times {10}^{ – 6} {m}^{2} \\ R = 2 Ω \\ \rho = 1.6 \times {10}^{ – 8} Ωm\\ \\ l = \frac{2 \times 3.14 \times {10}^{ – 6} }{1.6 \times {10}^{ – 8} } \\ = 392.5m[/tex] Reply
Length of the conductor = 392.5m
Step-by-step explanation:
[tex] \boxed {R = \frac{ \rho \: l}{A} } \\R \rightarrow Resistance,\\\rho \rightarrow Resistivity, l\rightarrow Length ,A\rightarrow Area\\ \boxed{l = \frac{RA}{ \rho} } \\ A = \: \pi {r}^{2} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 3.14 \times (1 \times {10}^{ – 3} )²\\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 3.14 \times {10}^{ – 6} {m}^{2} \\ R = 2 Ω \\ \rho = 1.6 \times {10}^{ – 8} Ωm\\ \\ l = \frac{2 \times 3.14 \times {10}^{ – 6} }{1.6 \times {10}^{ – 8} } \\ = 392.5m[/tex]