Find the Height of the Parallelogram if the Area of Parallelogram is 36 cm² and Base is 9 cm and Base in 9 cm ? •Don’t Spam !!•Answer With Full Explanation !!•Don’t Greedy For Points !! About the author Josephine
Given : The Area of Parallelogram is 36 cm² and Base is 9 cm. To Find : Height of the Parallelogram ? _____________________ ❍ Let’s consider the Height of the Parallelogram be h. [tex]\underline{\frak{As ~we~ know~ that~:}}[/tex] [tex]\boxed{\sf\pink{Area_{(Parallelogram)}~=~b~×~h}}[/tex]★ [tex]~[/tex] Solution : Here b is the Base of Parallelogram in cm & h is the Height of Parallelogram in cm. And we have given with the Area of Parallelogram is 36 cm². [tex]~[/tex] [tex]\underline{\bf{Now ~By ~Substituting~ the ~Given~ Values~:}}[/tex] [tex]~[/tex] [tex]~~~~~~~~~~{\sf:\implies{36~cm^{2}~=~9~×~h}}[/tex] [tex]~~~~~~~~~~{\sf:\implies{h~=~\dfrac{36}{9}}}[/tex] [tex]~~~~~~~~~~{\sf:\implies{h~=~\cancel\dfrac{36}{6}}}[/tex] [tex]~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{h~4~cm}}}}}[/tex]★ [tex]~[/tex] Hence, [tex]\therefore\underline{\sf{Height~ of ~the ~Parallelogram ~is~\bold{4~cm}}}[/tex] [tex]~[/tex] ________________________________________________ V E R I F I C A T I O N : [tex]~[/tex] [tex]\underline{\frak{As ~we ~know~ that~:}}[/tex] [tex]\boxed{\sf\pink{Area_{(Parallelogram)}~=~b~×~h}}[/tex]★ [tex]~[/tex] Here b is the Base of Parallelogram in cm & h is the Height of Parallelogram in cm. And we have given with the Area of Parallelogram is 36 cm². [tex]~[/tex] [tex]\underline{\bf{Now~ By ~Substituting ~the ~Given ~and~ Found~ Values~:}}[/tex] [tex]~[/tex] [tex]~~~~~~~~~~{\rm:\implies{36~cm^{2}~=~9~×~4}}[/tex] [tex]~~~~~~~~~~:\implies\boxed{\rm\pink{36~cm^{2}~=~36~cm^{2}}}[/tex]★ [tex]~~~~[/tex][tex]\qquad\quad\therefore\underline{\textsf{\textbf{Hence Verified!}}}[/tex] [tex]~[/tex] __________________________________________ More Information : [tex]~~~[/tex][tex]\qquad\quad\underline{\textsf{\textbf\pink{Formula’s~of~Areas~:}}}[/tex] [tex]{\rm\leadsto{Square~=~(Side)^2}}[/tex] [tex]{\rm\leadsto{Rectangle~=~Length~×~Breadth}}[/tex] [tex]{\rm\leadsto{Triangle~=~\dfrac{1}{2}~×~Breadth ~×~Height}}[/tex] [tex]{\rm\leadsto{Scalene\triangle~=~\sqrt{s(s~-~a)(s~-~b)(s~-~c)}}}[/tex] [tex]{\rm\leadsto{Rhombus~=~\dfrac{1}{2}~×~d_{1}~×~d_{2}}}[/tex] [tex]{\rm\leadsto{Rhombus~=~\dfrac{1}{2}p\sqrt{4a^{2}~-~p^{2}}}}[/tex] [tex]{\rm\leadsto{Parallelogram~=~ Breadth~×~ Height}}[/tex] [tex]{\rm\leadsto{Trapezium~=~\dfrac{1}{2}(a~+~b)~×~Height}}[/tex] [tex]{\rm\leadsto{Equilateral~Triangle~=~\dfrac{\sqrt{3}}{4}(Side)^2}}[/tex] Reply
Answer: Also, the area of the parallelogram ABCD is equal to 36 cm2. So, AB×x=36. Hence, the height of the parallelogram ABEF is 8.57 cm. Best of luck your future Reply
Given : The Area of Parallelogram is 36 cm² and Base is 9 cm.
To Find : Height of the Parallelogram ?
_____________________
❍ Let’s consider the Height of the Parallelogram be h.
[tex]\underline{\frak{As ~we~ know~ that~:}}[/tex]
[tex]~[/tex]
Solution : Here b is the Base of Parallelogram in cm & h is the Height of Parallelogram in cm. And we have given with the Area of Parallelogram is 36 cm².
[tex]~[/tex]
[tex]\underline{\bf{Now ~By ~Substituting~ the ~Given~ Values~:}}[/tex]
[tex]~[/tex]
[tex]~~~~~~~~~~{\sf:\implies{36~cm^{2}~=~9~×~h}}[/tex]
[tex]~~~~~~~~~~{\sf:\implies{h~=~\dfrac{36}{9}}}[/tex]
[tex]~~~~~~~~~~{\sf:\implies{h~=~\cancel\dfrac{36}{6}}}[/tex]
[tex]~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{h~4~cm}}}}}[/tex]★
[tex]~[/tex]
Hence,
[tex]\therefore\underline{\sf{Height~ of ~the ~Parallelogram ~is~\bold{4~cm}}}[/tex]
[tex]~[/tex]
________________________________________________
V E R I F I C A T I O N :
[tex]~[/tex]
[tex]\underline{\frak{As ~we ~know~ that~:}}[/tex]
[tex]~[/tex]
Here b is the Base of Parallelogram in cm & h is the Height of Parallelogram in cm. And we have given with the Area of Parallelogram is 36 cm².
[tex]~[/tex]
[tex]\underline{\bf{Now~ By ~Substituting ~the ~Given ~and~ Found~ Values~:}}[/tex]
[tex]~[/tex]
[tex]~~~~~~~~~~{\rm:\implies{36~cm^{2}~=~9~×~4}}[/tex]
[tex]~~~~~~~~~~:\implies\boxed{\rm\pink{36~cm^{2}~=~36~cm^{2}}}[/tex]★
[tex]~~~~[/tex][tex]\qquad\quad\therefore\underline{\textsf{\textbf{Hence Verified!}}}[/tex]
[tex]~[/tex]
__________________________________________
More Information :
[tex]~~~[/tex][tex]\qquad\quad\underline{\textsf{\textbf\pink{Formula’s~of~Areas~:}}}[/tex]
Answer:
Also, the area of the parallelogram ABCD is equal to 36 cm2. So, AB×x=36. Hence, the height of the parallelogram ABEF is 8.57 cm.
Best of luck your future