Find the equation of the perpendicular bisector of the line joining the points (0,0) and (-3,4) About the author Eloise
Answer: Answer Correct option is C 6x+4y=1 A(1,2) and B(−2,0) are given point ∴ midpoint p=( 2 1+(−2) , 2 2+0 ) ∴ midpoint p=( 2 −1 ,1) Also slope of AB= −2−1 0−(2) = −3 −2 ∴ slope of AB= 3 2 slope of line perpendicular to AB= 3 2 −1 = 2 −3 ∴ equation of perpendicular bisector y−1= 2 −3 (x+ 2 1 ) ∴y−1= 2 −3 (x+ 2 1 ) ∴2y−2=−3(x+ 2 1 ) ∴4y−4=−3(2x+1) ∴4y−4=−6x−3 ∴4y+6x−4+3=0 6x+4y−1=0 ∴ equation of line 6x+4y−1=0 Reply
Answer:
How To find search our friend name in brainly
Answer:
Answer
Correct option is
C
6x+4y=1
A(1,2) and B(−2,0) are given point
∴ midpoint p=(
2
1+(−2)
,
2
2+0
)
∴ midpoint p=(
2
−1
,1)
Also slope of AB=
−2−1
0−(2)
=
−3
−2
∴ slope of AB=
3
2
slope of line perpendicular to AB=
3
2
−1
=
2
−3
∴ equation of perpendicular bisector
y−1=
2
−3
(x+
2
1
)
∴y−1=
2
−3
(x+
2
1
)
∴2y−2=−3(x+
2
1
)
∴4y−4=−3(2x+1)
∴4y−4=−6x−3
∴4y+6x−4+3=0
6x+4y−1=0
∴ equation of line 6x+4y−1=0