Answer: 13 units Step-by-step explanation: Given, (2 , -5) (7 , 7) To Find :- Distance between the points Formula Required :- [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] Solution :- [tex]x_1 = 2 , y_1 = – 5[/tex] [tex]x_2=7 , y_2=7[/tex] [tex]d=\sqrt{(7-2)^2+(7-(-5)^2}[/tex] [tex]d=\sqrt{(5)^2+(12)^2}[/tex] [tex]d=\sqrt{25+144}[/tex] [tex]d=\sqrt{169}[/tex] d = 13 units. Reply
Answer: [tex]13 units[/tex] Step-by-step explanation: [tex]\sqrt{{(x_{2}-x_{1})}^{2} + {(y_{2}-y_{1} )}^{2} }[/tex] [tex]\sqrt{{(7-2)}^{2} + {(7+5)}^{2} }[/tex] [tex]\sqrt{5^{2} + 12^{2}}[/tex] [tex]\sqrt{25+144}[/tex] [tex]\sqrt{169}[/tex] [tex]13 units[/tex] Reply
Answer:
13 units
Step-by-step explanation:
Given,
(2 , -5)
(7 , 7)
To Find :-
Distance between the points
Formula Required :-
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Solution :-
[tex]x_1 = 2 , y_1 = – 5[/tex]
[tex]x_2=7 , y_2=7[/tex]
[tex]d=\sqrt{(7-2)^2+(7-(-5)^2}[/tex]
[tex]d=\sqrt{(5)^2+(12)^2}[/tex]
[tex]d=\sqrt{25+144}[/tex]
[tex]d=\sqrt{169}[/tex]
d = 13 units.
Answer:
[tex]13 units[/tex]
Step-by-step explanation:
[tex]\sqrt{{(x_{2}-x_{1})}^{2} + {(y_{2}-y_{1} )}^{2} }[/tex]
[tex]\sqrt{{(7-2)}^{2} + {(7+5)}^{2} }[/tex]
[tex]\sqrt{5^{2} + 12^{2}}[/tex]
[tex]\sqrt{25+144}[/tex]
[tex]\sqrt{169}[/tex]
[tex]13 units[/tex]