find the discriminant of the equation 3×2-5x+2=0 and hence write the nature of roots About the author Eva
Step-by-step explanation: given a = 3, b= – 5, c = 2 discriminant = b² – 4ac = 3² – 4 ( -5 ) ( 2 ) = 9 – ( – 40 ) = 9 + 40 = 49 Reply
Discriminant Discriminant is denoted by ‘[tex]D[/tex]’ and given by: [tex]D = b^2 – 4ac[/tex] Nature of roots When we find the value of [tex]D[/tex], we can identify the nature of roots if: [tex]\bigstar[/tex] [tex]D[/tex] is greater than 0, roots are real and distinct. [tex]\bigstar[/tex] [tex]D = 0[/tex], roots are real and equal. [tex]\bigstar[/tex] [tex]D[/tex] is lesser than 0, roots are imaginary. Solution We are given a quadratic equation [tex]3x^2-5x+2=0[/tex]. Let us note the values of [tex]a,b[/tex] and [tex]c[/tex]. [tex]\Longrightarrow a = 3[/tex] [tex]\Longrightarrow b = -5[/tex] [tex]\Longrightarrow c = 2[/tex] Now, let us find the discriminant. [tex]\Longrightarrow D = b^2 – 4ac[/tex] [tex]\Longrightarrow D = (-5)^2 – (4 \times 3 \times 2)[/tex] [tex]\Longrightarrow D = 25 – 24[/tex] [tex]\Longrightarrow{\boxed{D = 1}}[/tex] Since Discriminant is greater than [tex]0[/tex], roots are real and distinct. Reply
Step-by-step explanation:
given
a = 3, b= – 5, c = 2
discriminant = b² – 4ac
= 3² – 4 ( -5 ) ( 2 )
= 9 – ( – 40 )
= 9 + 40
= 49
Discriminant
Discriminant is denoted by ‘[tex]D[/tex]’ and given by:
[tex]D = b^2 – 4ac[/tex]
Nature of roots
When we find the value of [tex]D[/tex], we can identify the nature of roots if:
[tex]\bigstar[/tex] [tex]D[/tex] is greater than 0, roots are real and distinct.
[tex]\bigstar[/tex] [tex]D = 0[/tex], roots are real and equal.
[tex]\bigstar[/tex] [tex]D[/tex] is lesser than 0, roots are imaginary.
Solution
We are given a quadratic equation [tex]3x^2-5x+2=0[/tex]. Let us note the values of [tex]a,b[/tex] and [tex]c[/tex].
[tex]\Longrightarrow a = 3[/tex]
[tex]\Longrightarrow b = -5[/tex]
[tex]\Longrightarrow c = 2[/tex]
Now, let us find the discriminant.
[tex]\Longrightarrow D = b^2 – 4ac[/tex]
[tex]\Longrightarrow D = (-5)^2 – (4 \times 3 \times 2)[/tex]
[tex]\Longrightarrow D = 25 – 24[/tex]
[tex]\Longrightarrow{\boxed{D = 1}}[/tex]
Since Discriminant is greater than [tex]0[/tex], roots are real and distinct.