find the area of triangle whose vertices are A(1, 2,3) B(2, 3,1) C((3, 1,2) About the author Gabriella
[tex]\large\underline{\sf{Solution-}}[/tex] Given the vertices of triangle ABC, Coordinates of vertex A = (1, 2, 3) Coordinates of vertex B = (2, 3, 1) Coordinates of vertex C = (3, 1, 2) Now, We have to find the area of triangle ABC. We use here Vector method to find the area of triangle as it is in 3 dimension. Now, [tex]\rm :\longmapsto\: \vec{AB} \: = \vec{OB} – \vec{OA}[/tex] [tex]\rm :\longmapsto\:\vec{AB} = 2 \hat{i} + 3\hat{j} + \hat{k} – (\hat{i} + 2\hat{j} + 3\hat{k})[/tex] [tex]\rm :\longmapsto\:\vec{AB} = 2 \hat{i} + 3\hat{j} + \hat{k} – \hat{i} – 2\hat{j} – 3\hat{k}[/tex] [tex]\rm :\longmapsto\:\vec{AB} = \hat{i} + \hat{j} – 2\hat{k}[/tex] Aɢᴀɪɴ, [tex]\rm :\longmapsto\:\vec{AC} = \vec{OC} – \vec{OA}[/tex] [tex]\rm :\longmapsto\:\vec{AC} = 3\hat{i} + \hat{j} + 2\hat{k} – (\hat{i} + 2\hat{j} + 3\hat{k})[/tex] [tex]\rm :\longmapsto\:\vec{AC} = 3\hat{i} + \hat{j} + 2\hat{k} – \hat{i} – 2\hat{j} – 3\hat{k}[/tex] [tex]\rm :\longmapsto\:\vec{AC} = 2\hat{i} – \hat{j} – \hat{k}[/tex] Now, ↝ Consider, [tex]\rm :\longmapsto\: \vec{AB} \times \vec{AC}[/tex] [tex] \rm \: = \: \: \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\1&1& – 2\\2& – 1& – 1\end{array}\right | \end{gathered}[/tex] [tex] \rm \: = \: \: \: \hat{i}( – 1 – 2) – \hat{j}( – 1 + 4) + \hat{k}( – 1 – 2)[/tex] [tex] \rm \: = \: \: \: – 3\hat{i} – 3\hat{j} – 3\hat{k}[/tex] Therefore, [tex]\rm :\longmapsto\: | \vec{AB} \times \vec{AC} | = \sqrt{ {( – 3)}^{2} + {( – 3)}^{2} + {( – 3)}^{2} } [/tex] [tex]\rm :\longmapsto\: | \vec{AB} \times \vec{AC} | = \sqrt{9 + 9 + 9} [/tex] [tex]\rm :\longmapsto\: | \vec{AB} \times \vec{AC} | = \sqrt{27} [/tex] [tex]\rm :\longmapsto\: | \vec{AB} \times \vec{AC} | = 3\sqrt{3} [/tex] ↝ Hence, [tex]\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{1}{2} | \vec{AB} \times \vec{AC} |[/tex] [tex]\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{1}{2} \times 3 \sqrt{3} [/tex] [tex]\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{3 \sqrt{3} }{2} \: sq. \: units[/tex] Additional Information :- [tex] \boxed{ \red{ \sf \: Area_{(\parallel \: gram)} = | \vec{a} \times \vec{b} |}}[/tex] [tex] \boxed{ \red{ \sf \: \vec{a} \times \vec{b} = – \vec{b} \times \vec{a}}}[/tex] [tex] \boxed{ \red{ \sf \: \vec{a} \times \vec{a} = 0}}[/tex] [tex] \boxed{ \red{ \sf \: |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}|sin \theta}} [/tex] [tex] \boxed{ \red{ \sf \: \vec{a} \times \vec{b} = \vec{0} \implies \: \vec{a} \parallel\vec{b}}} [/tex] Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Given the vertices of triangle ABC,
Now,
We use here
Now,
[tex]\rm :\longmapsto\: \vec{AB} \: = \vec{OB} – \vec{OA}[/tex]
[tex]\rm :\longmapsto\:\vec{AB} = 2 \hat{i} + 3\hat{j} + \hat{k} – (\hat{i} + 2\hat{j} + 3\hat{k})[/tex]
[tex]\rm :\longmapsto\:\vec{AB} = 2 \hat{i} + 3\hat{j} + \hat{k} – \hat{i} – 2\hat{j} – 3\hat{k}[/tex]
[tex]\rm :\longmapsto\:\vec{AB} = \hat{i} + \hat{j} – 2\hat{k}[/tex]
Aɢᴀɪɴ,
[tex]\rm :\longmapsto\:\vec{AC} = \vec{OC} – \vec{OA}[/tex]
[tex]\rm :\longmapsto\:\vec{AC} = 3\hat{i} + \hat{j} + 2\hat{k} – (\hat{i} + 2\hat{j} + 3\hat{k})[/tex]
[tex]\rm :\longmapsto\:\vec{AC} = 3\hat{i} + \hat{j} + 2\hat{k} – \hat{i} – 2\hat{j} – 3\hat{k}[/tex]
[tex]\rm :\longmapsto\:\vec{AC} = 2\hat{i} – \hat{j} – \hat{k}[/tex]
Now,
↝ Consider,
[tex]\rm :\longmapsto\: \vec{AB} \times \vec{AC}[/tex]
[tex] \rm \: = \: \: \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\1&1& – 2\\2& – 1& – 1\end{array}\right | \end{gathered}[/tex]
[tex] \rm \: = \: \: \: \hat{i}( – 1 – 2) – \hat{j}( – 1 + 4) + \hat{k}( – 1 – 2)[/tex]
[tex] \rm \: = \: \: \: – 3\hat{i} – 3\hat{j} – 3\hat{k}[/tex]
Therefore,
[tex]\rm :\longmapsto\: | \vec{AB} \times \vec{AC} | = \sqrt{ {( – 3)}^{2} + {( – 3)}^{2} + {( – 3)}^{2} } [/tex]
[tex]\rm :\longmapsto\: | \vec{AB} \times \vec{AC} | = \sqrt{9 + 9 + 9} [/tex]
[tex]\rm :\longmapsto\: | \vec{AB} \times \vec{AC} | = \sqrt{27} [/tex]
[tex]\rm :\longmapsto\: | \vec{AB} \times \vec{AC} | = 3\sqrt{3} [/tex]
↝ Hence,
[tex]\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{1}{2} | \vec{AB} \times \vec{AC} |[/tex]
[tex]\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{1}{2} \times 3 \sqrt{3} [/tex]
[tex]\rm :\longmapsto\:Area_{(\triangle \: ABC)} = \dfrac{3 \sqrt{3} }{2} \: sq. \: units[/tex]
Additional Information :-
[tex] \boxed{ \red{ \sf \: Area_{(\parallel \: gram)} = | \vec{a} \times \vec{b} |}}[/tex]
[tex] \boxed{ \red{ \sf \: \vec{a} \times \vec{b} = – \vec{b} \times \vec{a}}}[/tex]
[tex] \boxed{ \red{ \sf \: \vec{a} \times \vec{a} = 0}}[/tex]
[tex] \boxed{ \red{ \sf \: |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}|sin \theta}} [/tex]
[tex] \boxed{ \red{ \sf \: \vec{a} \times \vec{b} = \vec{0} \implies \: \vec{a} \parallel\vec{b}}} [/tex]