find the area of a trapezium if lengths of the two parallel sides are 8.5cm and 11.5cm respectively and its height is 6.2cm​

By Cora

find the area of a trapezium if lengths of the two parallel sides are 8.5cm and 11.5cm respectively and its height is 6.2cm​

About the author
Cora

2 thoughts on “find the area of a trapezium if lengths of the two parallel sides are 8.5cm and 11.5cm respectively and its height is 6.2cm​”

  1. Answer:

    • 62 cm²

    Step-by-step explanation:

    Given

    • Two parallel sides of trapezium :
    1. 8.5 cm
    2. 11.5 cm
    • Height of trapezium = 6.2 cm

    To find

    • Area of trapezium

    Solution

    Area of trapezium = a + b / 2 × h

    Where :

    • a – parallel side 1
    • b – parallel side 2
    • h – height

    Substituting we get :

    • (8.5 + 11.5/2) × 6.2
    • (20/2) × 6.2
    • (10) × 6.2
    • 62

    Hence, the area of trapezium is 62 cm².

    Reply
  2. Answer:

    [tex]\large{\underline{\underline{\textbf{Given}}}}[/tex]

    • ~The lengths of two parallel sides of trapezium are 8.5cm and 11.5cm
    • ~The height of Trapezium is 6.2 cm

    [tex]\large{\underline{\underline{\textbf{To\:Find }}}}[/tex]

    • ~Area of Trapezium

    [tex]\large{\underline{\underline{\textbf{Using Formula}}}}[/tex]

    [tex]\circ\underline{ \boxed{\sf{ \dfrac{1}{2} \times (sum \: of \: parallel \: sides) × h}}}[/tex]

    [tex]\large{\underline{\underline{\textbf{Solution}}}}[/tex]

    [tex]{ : \implies \sf{ \dfrac{1}{2} \times (sum \: of \: parallel \: sides) × h}}[/tex]

    [tex]\begin{gathered} \\ \end{gathered}[/tex]

    • Substituting the values

    [tex]\begin{gathered} \\ \end{gathered}[/tex]

    [tex]{ : \implies \sf{ \dfrac{1}{2} \times (8.5 + 11.5)× 6.2}}[/tex]

    [tex]\begin{gathered} \\ \end{gathered}[/tex]

    [tex]{ : \implies \sf{ \dfrac{20}{2} × 6.2}}[/tex]

    [tex]\begin{gathered} \\ \end{gathered}[/tex]

    [tex]{ : \implies \sf{ \cancel\dfrac{20}{2} × 6.2}}[/tex]

    [tex]\begin{gathered} \\ \end{gathered}[/tex]

    [tex]{ : \implies \sf{ 10× 6.2}}[/tex]

    [tex]\begin{gathered} \\ \end{gathered}[/tex]

    [tex]{ :\implies\bf{ 62 \: {cm}^{2}}}[/tex]

    [tex]\begin{gathered} \\ \end{gathered}[/tex]

    [tex]\begin{gathered} \large \purple\bigstar\underline{ \boxed {\sf \pink{\pmb {62 \: {cm}^{2}}}}} \end{gathered}[/tex]

    • ~Henceforth,The Area of Trapezium is 62 cm².

    [tex]\begin{gathered} \\ \end{gathered}[/tex]

    [tex]\large{\underline{\underline{\textbf{Know\: More}}}}[/tex]

    • ➟ Volume of cylinder = πr²h
    • ➟ T.S.A of cylinder = 2πrh + 2πr²
    • ➟ Volume of cone = ⅓ πr²h
    • ➟ C.S.A of cone = πrl
    • ➟ T.S.A of cone = πrl + πr²
    • ➟ Volume of cuboid = l × b × h
    • ➟ C.S.A of cuboid = 2(l + b)h
    • ➟ T.S.A of cuboid = 2(lb + bh + lh)
    • ➟ C.S.A of cube = 4a²
    • ➟ T.S.A of cube = 6a²
    • ➟ Volume of cube = a³
    • ➟ Volume of sphere = (4/3)πr³
    • ➟ Surface area of sphere = 4πr²
    • ➟ Volume of hemisphere = ⅔ πr³
    • ➟ C.S.A of hemisphere = 2πr²
    • ➟ T.S.A of hemisphere = 3πr²
    Reply

Leave a Comment