find the area of a trapezium if lengths of the two parallel sides are 8.5cm and 11.5cm respectively and its height is 6.2cm About the author Cora
Answer: 62 cm² Step-by-step explanation: Given Two parallel sides of trapezium : 8.5 cm 11.5 cm Height of trapezium = 6.2 cm To find Area of trapezium Solution ∅ Area of trapezium = a + b / 2 × h Where : a – parallel side 1 b – parallel side 2 h – height Substituting we get : (8.5 + 11.5/2) × 6.2 (20/2) × 6.2 (10) × 6.2 62 Hence, the area of trapezium is 62 cm². Reply
Answer: [tex]\large{\underline{\underline{\textbf{Given}}}}[/tex] ~The lengths of two parallel sides of trapezium are 8.5cm and 11.5cm ~The height of Trapezium is 6.2 cm [tex]\large{\underline{\underline{\textbf{To\:Find }}}}[/tex] ~Area of Trapezium [tex]\large{\underline{\underline{\textbf{Using Formula}}}}[/tex] [tex]\circ\underline{ \boxed{\sf{ \dfrac{1}{2} \times (sum \: of \: parallel \: sides) × h}}}[/tex] [tex]\large{\underline{\underline{\textbf{Solution}}}}[/tex] [tex]{ : \implies \sf{ \dfrac{1}{2} \times (sum \: of \: parallel \: sides) × h}}[/tex] [tex]\begin{gathered} \\ \end{gathered}[/tex] Substituting the values [tex]\begin{gathered} \\ \end{gathered}[/tex] [tex]{ : \implies \sf{ \dfrac{1}{2} \times (8.5 + 11.5)× 6.2}}[/tex] [tex]\begin{gathered} \\ \end{gathered}[/tex] [tex]{ : \implies \sf{ \dfrac{20}{2} × 6.2}}[/tex] [tex]\begin{gathered} \\ \end{gathered}[/tex] [tex]{ : \implies \sf{ \cancel\dfrac{20}{2} × 6.2}}[/tex] [tex]\begin{gathered} \\ \end{gathered}[/tex] [tex]{ : \implies \sf{ 10× 6.2}}[/tex] [tex]\begin{gathered} \\ \end{gathered}[/tex] [tex]{ :\implies\bf{ 62 \: {cm}^{2}}}[/tex] [tex]\begin{gathered} \\ \end{gathered}[/tex] [tex]\begin{gathered} \large \purple\bigstar\underline{ \boxed {\sf \pink{\pmb {62 \: {cm}^{2}}}}} \end{gathered}[/tex] ~Henceforth,The Area of Trapezium is 62 cm². [tex]\begin{gathered} \\ \end{gathered}[/tex] [tex]\large{\underline{\underline{\textbf{Know\: More}}}}[/tex] ➟ Volume of cylinder = πr²h ➟ T.S.A of cylinder = 2πrh + 2πr² ➟ Volume of cone = ⅓ πr²h ➟ C.S.A of cone = πrl ➟ T.S.A of cone = πrl + πr² ➟ Volume of cuboid = l × b × h ➟ C.S.A of cuboid = 2(l + b)h ➟ T.S.A of cuboid = 2(lb + bh + lh) ➟ C.S.A of cube = 4a² ➟ T.S.A of cube = 6a² ➟ Volume of cube = a³ ➟ Volume of sphere = (4/3)πr³ ➟ Surface area of sphere = 4πr² ➟ Volume of hemisphere = ⅔ πr³ ➟ C.S.A of hemisphere = 2πr² ➟ T.S.A of hemisphere = 3πr² Reply
Answer:
Step-by-step explanation:
Given
To find
Solution
∅ Area of trapezium = a + b / 2 × h
Where :
Substituting we get :
Hence, the area of trapezium is 62 cm².
Answer:
[tex]\large{\underline{\underline{\textbf{Given}}}}[/tex]
[tex]\large{\underline{\underline{\textbf{To\:Find }}}}[/tex]
[tex]\large{\underline{\underline{\textbf{Using Formula}}}}[/tex]
[tex]\circ\underline{ \boxed{\sf{ \dfrac{1}{2} \times (sum \: of \: parallel \: sides) × h}}}[/tex]
[tex]\large{\underline{\underline{\textbf{Solution}}}}[/tex]
[tex]{ : \implies \sf{ \dfrac{1}{2} \times (sum \: of \: parallel \: sides) × h}}[/tex]
[tex]\begin{gathered} \\ \end{gathered}[/tex]
[tex]\begin{gathered} \\ \end{gathered}[/tex]
[tex]{ : \implies \sf{ \dfrac{1}{2} \times (8.5 + 11.5)× 6.2}}[/tex]
[tex]\begin{gathered} \\ \end{gathered}[/tex]
[tex]{ : \implies \sf{ \dfrac{20}{2} × 6.2}}[/tex]
[tex]\begin{gathered} \\ \end{gathered}[/tex]
[tex]{ : \implies \sf{ \cancel\dfrac{20}{2} × 6.2}}[/tex]
[tex]\begin{gathered} \\ \end{gathered}[/tex]
[tex]{ : \implies \sf{ 10× 6.2}}[/tex]
[tex]\begin{gathered} \\ \end{gathered}[/tex]
[tex]{ :\implies\bf{ 62 \: {cm}^{2}}}[/tex]
[tex]\begin{gathered} \\ \end{gathered}[/tex]
[tex]\begin{gathered} \large \purple\bigstar\underline{ \boxed {\sf \pink{\pmb {62 \: {cm}^{2}}}}} \end{gathered}[/tex]
[tex]\begin{gathered} \\ \end{gathered}[/tex]
[tex]\large{\underline{\underline{\textbf{Know\: More}}}}[/tex]