find simple interest and compound interest both on rupees 30000 at 8 p.c.p.a for 2 years About the author Allison
Answer :- The simple interest is Rs 4800. The compound interest is Rs 4992. Step-by-step explanation :- In this question, the principal, rate and time have been given to us. We have to find the simple interest and compound interest. —————- Let’s find the simple interest first! We know that :- [tex] \underline{ \boxed{ \sf SI = \dfrac{Principal \times Rate \times Time}{100}}}[/tex] Here, Principal = Rs 30000. Rate = 8 p.c.p.a. Time = 2 years. Hence, [tex]\tt SI = \dfrac{30000 \times 8 \times 2}{100}[/tex] Cutting off the zeroes, [tex] \tt SI = \dfrac{300 \times 8 \times 2}{1} [/tex] Now let’s multiply the remaining numbers. [tex] \tt SI = 300 \times 8 \times 2[/tex] Multiplying the remaining numbers, [tex]\overline{\boxed{\tt SI = Rs \: 4800}}[/tex] The simple interest is Rs 4800. —————- Now let’s find the compound interest! First let’s find the amount. We know that :- [tex] \underline{\boxed{\sf Amount = Principal \Bigg(1 + \dfrac{Rate}{100} \Bigg)^{Time}}}[/tex] Here, Principal = Rs 30000. Rate = 8 p.c.p.a. Time = 2 years. Hence, [tex] \rm Amount = 30000 \bigg(1 + \dfrac{8}{100} \bigg)^{2} [/tex] Making 1 a fraction by taking 1 as the denominator, [tex] \rm Amount = 30000 \bigg( \dfrac{1}{1} + \dfrac{8}{100} \bigg)^{2} [/tex] The LCM of 1 and 100 is 100, so adding the fractions using their denominators, [tex] \rm Amount = 30000 \bigg( \dfrac{1 \times 100 + 8 \times 1}{100 } \bigg)^{2} [/tex] On simplifying, [tex] \rm Amount = 30000 \bigg( \dfrac{100 + 8}{100} \bigg)^{2} [/tex] Adding 8 to 100, [tex] \rm Amount = 30000 \bigg( \dfrac{108}{100} \bigg) ^{2} [/tex] The power here is 2, so removing the brackets and multiplying 108/100 with itself 2 times, [tex] \rm Amount = 30000 \times \dfrac{108}{100} \times \dfrac{108}{100} [/tex] Let’s multiply 108/100 with itself 2 times first. [tex] \rm Amount = 30000 \times \dfrac{108 \times 108}{100 \times 100} [/tex] On multiplying, [tex] \rm Amount = 30000 \times \dfrac{11664}{10000} [/tex] Cutting off the zeroes, [tex] \rm Amount = 3 \times \dfrac{11664}{1} [/tex] Now let’s multiply the remaining numbers. [tex] \rm Amount = 3 \times 11664[/tex] Multiplying 3 with 11664, [tex] \overline{\boxed{ \rm Amount = Rs \: 34992}}[/tex] —————- Now, as we know the amount, let’s find the compound interest! We know that :- [tex] \underline{ \boxed{\sf CI = Amount – Principal}}[/tex] Here, Amount = Rs 34992. Principal = Rs 30000. Hence, [tex] \boxed{ \bf CI = 34992 – 30000}[/tex] Subtracting 30000 from 34992, [tex] \overline{\boxed{ \bf CI = Rs \: 4992}}[/tex] The compound interest is Rs 4992. —————- Abbreviations used :- [tex] \sf SI = Simple \: Interest. [/tex] [tex] \sf CI = Compound \: Interest. [/tex] Reply
Step-by-step explanation:
rqi-bubz-cho
join
girls
for.
fun
come
na
baby
Answer :-
Step-by-step explanation :-
—————-
Let’s find the simple interest first!
We know that :-
[tex] \underline{ \boxed{ \sf SI = \dfrac{Principal \times Rate \times Time}{100}}}[/tex]
Here,
Hence,
[tex]\tt SI = \dfrac{30000 \times 8 \times 2}{100}[/tex]
Cutting off the zeroes,
[tex] \tt SI = \dfrac{300 \times 8 \times 2}{1} [/tex]
Now let’s multiply the remaining numbers.
[tex] \tt SI = 300 \times 8 \times 2[/tex]
Multiplying the remaining numbers,
[tex]\overline{\boxed{\tt SI = Rs \: 4800}}[/tex]
—————-
Now let’s find the compound interest!
First let’s find the amount.
We know that :-
[tex] \underline{\boxed{\sf Amount = Principal \Bigg(1 + \dfrac{Rate}{100} \Bigg)^{Time}}}[/tex]
Here,
Hence,
[tex] \rm Amount = 30000 \bigg(1 + \dfrac{8}{100} \bigg)^{2} [/tex]
Making 1 a fraction by taking 1 as the denominator,
[tex] \rm Amount = 30000 \bigg( \dfrac{1}{1} + \dfrac{8}{100} \bigg)^{2} [/tex]
The LCM of 1 and 100 is 100, so adding the fractions using their denominators,
[tex] \rm Amount = 30000 \bigg( \dfrac{1 \times 100 + 8 \times 1}{100 } \bigg)^{2} [/tex]
On simplifying,
[tex] \rm Amount = 30000 \bigg( \dfrac{100 + 8}{100} \bigg)^{2} [/tex]
Adding 8 to 100,
[tex] \rm Amount = 30000 \bigg( \dfrac{108}{100} \bigg) ^{2} [/tex]
The power here is 2, so removing the brackets and multiplying 108/100 with itself 2 times,
[tex] \rm Amount = 30000 \times \dfrac{108}{100} \times \dfrac{108}{100} [/tex]
Let’s multiply 108/100 with itself 2 times first.
[tex] \rm Amount = 30000 \times \dfrac{108 \times 108}{100 \times 100} [/tex]
On multiplying,
[tex] \rm Amount = 30000 \times \dfrac{11664}{10000} [/tex]
Cutting off the zeroes,
[tex] \rm Amount = 3 \times \dfrac{11664}{1} [/tex]
Now let’s multiply the remaining numbers.
[tex] \rm Amount = 3 \times 11664[/tex]
Multiplying 3 with 11664,
[tex] \overline{\boxed{ \rm Amount = Rs \: 34992}}[/tex]
—————-
Now, as we know the amount, let’s find the compound interest!
We know that :-
[tex] \underline{ \boxed{\sf CI = Amount – Principal}}[/tex]
Here,
Hence,
[tex] \boxed{ \bf CI = 34992 – 30000}[/tex]
Subtracting 30000 from 34992,
[tex] \overline{\boxed{ \bf CI = Rs \: 4992}}[/tex]
—————-
Abbreviations used :-
[tex] \sf SI = Simple \: Interest. [/tex]
[tex] \sf CI = Compound \: Interest. [/tex]