Solution Given:– Roots of quadratic equations = √3 , -√3 Find :– quadratic Equation Explanation Let, Roots are p & q First Calculate sum of roots ==> Sum of roots = p + q ==> p + q = √3 + (-√3) ==> p + q = 0 Now, calculate product of roots ==> product of roots= p.q ==> p.q = √3 × (-√3) ==> p.q = -3 Formula of Equation [tex]\boxed{\underline{\tt{\red{\:(x^2-(p+q)x+(p.q)\:=\:0}}}}[/tex] Keep all above Values, ==> x² – (0)x + (-3) = 0 ==> x² – 3 = 0 Hence Quadratic Equation will be = x² – 3 = 0 __________________ Reply
Solution
Given:–
Find :–
Explanation
Let,
First Calculate sum of roots
==> Sum of roots = p + q
==> p + q = √3 + (-√3)
==> p + q = 0
Now, calculate product of roots
==> product of roots= p.q
==> p.q = √3 × (-√3)
==> p.q = -3
Formula of Equation
[tex]\boxed{\underline{\tt{\red{\:(x^2-(p+q)x+(p.q)\:=\:0}}}}[/tex]
Keep all above Values,
==> x² – (0)x + (-3) = 0
==> x² – 3 = 0
Hence
__________________