Find quadratic polynomial whose sum of zero and products of zero hour respectively 4 and 1. About the author Harper
[tex]\large {\pmb{\mathfrak{\red{Given…}}}}[/tex] Given that, 4 and 1 are the sum and product of the zeroes of a polynomial respectively. [tex] \\ [/tex] [tex]\large {\pmb{\mathfrak{\red{To~ find…}}}}[/tex] We have to find the polynomial. [tex] \\ [/tex] [tex]\large {\pmb{\mathfrak{\red{Solution…}}}}[/tex] According to the question, Sum of zeroes = 4 = : [tex]\sf \alpha+\beta[/tex] Product of zeroes = 1 : [tex]\sf \alpha\beta[/tex] We know that : [tex]\underline{\pmb{\bf{\green{Polynomial= x^2-(Sum~of~ the ~ zeroes)x+(Product~of ~ the ~zeroes)}}}}[/tex] Now, from the question, we’ll substitute the sum and product of the zeroes in the formula above and form the polynomial : [tex]:\implies \sf x^2-(\alpha+\beta)x+(\alpha\beta)[/tex] [tex] : \implies \sf {x}^{2} – (4)x + (1)[/tex] [tex] : \implies\sf {x}^{2} – 4x + 1[/tex] ____________________ [tex]\pmb{\bf{\green{\therefore~x^2-4x+1~is~the~required~polynomial.}}}[/tex] [tex]\\[/tex] [tex]\large {\pmb{\mathfrak{\red{Important~points…}}}}[/tex] [tex]\sf \alpha+\beta+\gamma=\dfrac{-b}{a}[/tex] [tex]\sf \alpha\beta\gamma=\dfrac{-d}{a}[/tex] [tex]\sf \alpha\beta+\beta\gamma+\gamma\alpha=\dfrac{c}{a}[/tex] Quadratic formula = [tex]\sf \dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex] Reply
[tex]\large {\pmb{\mathfrak{\red{Given…}}}}[/tex]
Given that, 4 and 1 are the sum and product of the zeroes of a polynomial respectively.
[tex] \\ [/tex]
[tex]\large {\pmb{\mathfrak{\red{To~ find…}}}}[/tex]
We have to find the polynomial.
[tex] \\ [/tex]
[tex]\large {\pmb{\mathfrak{\red{Solution…}}}}[/tex]
According to the question,
We know that :
[tex]\underline{\pmb{\bf{\green{Polynomial= x^2-(Sum~of~ the ~ zeroes)x+(Product~of ~ the ~zeroes)}}}}[/tex]
Now, from the question, we’ll substitute the sum and product of the zeroes in the formula above and form the polynomial :
[tex]:\implies \sf x^2-(\alpha+\beta)x+(\alpha\beta)[/tex]
[tex] : \implies \sf {x}^{2} – (4)x + (1)[/tex]
[tex] : \implies\sf {x}^{2} – 4x + 1[/tex]
____________________
[tex]\pmb{\bf{\green{\therefore~x^2-4x+1~is~the~required~polynomial.}}}[/tex]
[tex]\\[/tex]
[tex]\large {\pmb{\mathfrak{\red{Important~points…}}}}[/tex]