Answer: 3 & 4 Step-by-step explanation: Your answer is => as we have given the equation => = > \frac{(x-1) }{(x+1) }=\frac{(2x-5) }{(3x-7) }=> (x+1) (x−1) = (3x−7) (2x−5) cross multiply both sides , we get => = > (X-1) (3x-7) =(2x-5) (x+1)=>(X−1)(3x−7)=(2x−5)(x+1) = > 3x^{2}-7x-3x+7\: =\: 2x^{2}-3x-12=>3x 2 −7x−3x+7=2x 2 −3x−12 = > 3x^{2}-10x+7\: =\: 2x^{2}-3x-12=>3x 2 −10x+7=2x 2 −3x−12 = > 3x^{2}-2x^{2}-10x+3x+7+5=0=>3x 2 −2x 2 −10x+3x+7+5=0 = > x^{2}-7x+12\:=\:0=>x 2 −7x+12=0 = > x^{2}-3x-4x+12=0=>x 2 −3x−4x+12=0 = > x(x-3) \: -\:4(x-3) =\: 0=>x(x−3)−4(x−3)=0 = > (x-3) (x-4) =0=>(x−3)(x−4)=0 = > (x-3) =0 \: \: \: \: or\: \: \: \: (x-4) =0=>(x−3)=0or(x−4)=0 = > x\: =\: 3 \: \: \: or\: \: \: x\: =\: 4=>x=3orx=4 our factors for given equation are 3 & 4. Reply
Answer:
3 & 4
Step-by-step explanation:
Your answer is =>
as we have given the equation =>
= > \frac{(x-1) }{(x+1) }=\frac{(2x-5) }{(3x-7) }=>
(x+1)
(x−1)
=
(3x−7)
(2x−5)
cross multiply both sides , we get =>
= > (X-1) (3x-7) =(2x-5) (x+1)=>(X−1)(3x−7)=(2x−5)(x+1)
= > 3x^{2}-7x-3x+7\: =\: 2x^{2}-3x-12=>3x
2
−7x−3x+7=2x
2
−3x−12
= > 3x^{2}-10x+7\: =\: 2x^{2}-3x-12=>3x
2
−10x+7=2x
2
−3x−12
= > 3x^{2}-2x^{2}-10x+3x+7+5=0=>3x
2
−2x
2
−10x+3x+7+5=0
= > x^{2}-7x+12\:=\:0=>x
2
−7x+12=0
= > x^{2}-3x-4x+12=0=>x
2
−3x−4x+12=0
= > x(x-3) \: -\:4(x-3) =\: 0=>x(x−3)−4(x−3)=0
= > (x-3) (x-4) =0=>(x−3)(x−4)=0
= > (x-3) =0 \: \: \: \: or\: \: \: \: (x-4) =0=>(x−3)=0or(x−4)=0
= > x\: =\: 3 \: \: \: or\: \: \: x\: =\: 4=>x=3orx=4
our factors for given equation are 3 & 4.
Answer:
Your answer is
“x = – 2”
Hope it helps you.
May the force of maths be with you.