Find
dy dx /
of the folloings:
[tex]y=sech(e^{2x)[/tex]
[tex]y=cosh^{-1} (sinh^{-1} x)[/tex]

By Ella

Find
dy dx /
of the folloings:
[tex]y=sech(e^{2x)[/tex]
[tex]y=cosh^{-1} (sinh^{-1} x)[/tex]

About the author
Ella

1 thought on “Find<br /> dy dx /<br /> of the folloings: <br /> [tex]y=sech(e^{2x)[/tex]<br /> [tex]y=cosh^{-1} (sinh^{-1} x)[/tex]”

  1. [tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = f'(g(x)).g(x)[/tex]

    i) y = f(g(x)) = sec([tex]e^{2x}[/tex])

    [tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = sec(e^{2x})tan( e^{2x}).2e^{2x}[/tex]

    ii) y = f(g(x)) = [tex]cos^{-1}(sin^{-1}(x))[/tex]

    [tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = \frac{-1}{\sqrt{1 – (sin^{-1}x})^2}\frac{1}{\sqrt{1-x^2} }[/tex]

    Reply

Leave a Comment