Find dy dx / of the folloings: [tex]y=sech(e^{2x)[/tex] [tex]y=cosh^{-1} (sinh^{-1} x)[/tex] About the author Ella
[tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = f'(g(x)).g(x)[/tex] i) y = f(g(x)) = sec([tex]e^{2x}[/tex]) [tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = sec(e^{2x})tan( e^{2x}).2e^{2x}[/tex] ii) y = f(g(x)) = [tex]cos^{-1}(sin^{-1}(x))[/tex] [tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = \frac{-1}{\sqrt{1 – (sin^{-1}x})^2}\frac{1}{\sqrt{1-x^2} }[/tex] Reply
[tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = f'(g(x)).g(x)[/tex]
i) y = f(g(x)) = sec([tex]e^{2x}[/tex])
[tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = sec(e^{2x})tan( e^{2x}).2e^{2x}[/tex]
ii) y = f(g(x)) = [tex]cos^{-1}(sin^{-1}(x))[/tex]
[tex]\frac{dy}{dx} = \frac{d(f(g(x)))}{dx} = \frac{-1}{\sqrt{1 – (sin^{-1}x})^2}\frac{1}{\sqrt{1-x^2} }[/tex]