Find all other zeros of polynomial x⁴+x³-9x²-3x+8 if it is given two zeros are that[tex] \sqrt{3} and – \sqrt{3} [/tex] About the author Lyla
Heya !!! ( root 3 ) and (- root 3) are the two zeroes of the given polynomial. ( X – root 3 ) ( X + root 3 ) are also factor of polynomial P(X). Therefore, ( X – root 3 ) ( X + root 3) = (X² – 3) G(X) = X²-3 P(X) = X⁴ + X³ – 9X² – 3X+ 18 On dividing P(X) by G(X) we get, X² – 3 ) X⁴ + X³ – 9X² – 3X + 18 ( X² + X -6*X⁴ -3X² ——————————————— 0+X³ – 6X² – 3X + 18 X³-3 —————————————- 0*-6X² 0*+18 -6X² +18 —————————————— We get, Remainder = 0 And, Quotient = X² + X – 6 After factorise the quotient we will get two other zeroes of the given polynomial. => X²+X -6 => X² + 3X – 2X -6 => X ( X + 3) – 2 ( X +3) => (X + 3) ( X -2) = 0 => (X + 3) = 0 OR (X -2) = 0 => X = -3 OR X = 2 Hence,-3 , root 3 , 2 and – root 3 are four zeroes of the polynomial X⁴+X³-9X² -3X + 18. Reply
Heya !!!
( X – root 3 ) ( X + root 3) = (X² – 3)
G(X) = X²-3
P(X) = X⁴ + X³ – 9X² – 3X+ 18
———————————————
0+X³ – 6X² – 3X + 18
X³-3
—————————————-
0*-6X² 0*+18
-6X² +18
——————————————
We get,
Remainder = 0
And,
Quotient = X² + X – 6
=> X²+X -6
=> X² + 3X – 2X -6
=> X ( X + 3) – 2 ( X +3)
=> (X + 3) ( X -2) = 0
=> (X + 3) = 0 OR (X -2) = 0
=> X = -3 OR X = 2