Answer: Given :- α and β are the zeros of the polynomial 2x² – x + 5. To Find :- What is the value of α³ + β³. Solution :- Given equation : [tex] \longmapsto[/tex] [tex] \sf 2{x}^{2} – x + 5 =\: 0[/tex] where, a = 2 b = – 1 c = 5 Now, we have to find the sum of two roots : [tex] \mapsto \sf\boxed{\bold{\pink{\alpha + \beta =\: – \dfrac{b}{a}}}}[/tex] Then, [tex] \implies \sf \alpha + \beta =\: – \dfrac{- 1}{2}[/tex] [tex] \implies \sf\bold{\purple{\alpha + \beta =\: \dfrac{1}{2}}}[/tex] Again, we have to find the product of two roots : [tex] \mapsto \sf\boxed{\bold{\pink{\alpha\beta =\: \dfrac{c}{a}}}}[/tex] Then, [tex] \implies \sf\bold{\purple{\alpha\beta =\: \dfrac{5}{2}}}[/tex] Now, we have to find the value of α³ + β³ : As we know that : ➦ a³ + b³ = (a + b)³ – 3ab(a + b) According to the question by using the formula we get : [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: {(\alpha + \beta)}^{3} – 3\alpha\beta(\alpha + \beta)\\[/tex] [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: {\bigg(\dfrac{1}{2}\bigg)}^{3} – 3\bigg(\dfrac{5}{2}\bigg)\bigg(\dfrac{1}{2}\bigg)\\[/tex] [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – 3 \times \dfrac{5}{2} \times \dfrac{1}{2}\\[/tex] [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – 3 \times \dfrac{5}{4}\\[/tex] [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – \dfrac{15}{4}\\[/tex] [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1 – 30}{8}\\[/tex] [tex] \leadsto \sf\bold{\red{{\alpha}^{3} + {\beta}^{3} =\: \dfrac{- 29}{8}}}\\[/tex] [tex] \sf\boxed{\bold{\green{\therefore\: The\: value\: of\: {\alpha}^{3} + {\beta}^{3}\: is\: \dfrac{- 29}{8}.}}}[/tex] Reply
Answer:- Given:- α and β are the roots of 2x² – x + 5. On comparing the given polynomial with the standard form of a quadratic equation i.e., ax² + bx + c = 0 we get; a = 2 b = – 1 c = 5. We know that; Sum of the roots = – b/a ⟹ α + β = – ( – 1) / 2 ⟹ α + β = 1/2 — equation (1) And, product of the roots = c/a ⟹ αβ = 5/2 — equation (2) Now, we have to find:- ⟹ α³ + β³ We know that; a³ + b³ = (a + b)³ – 3ab(a + b) Hence; ⟹ α³ + β³ = (α + β)³ – 3αβ(α + β) Putting the respective values from equations (1) and (2) we get; ⟹ α³ + β³ = (1/2)³ – 3(5/2)(1/2) ⟹ α³ + β³ = (1/8) – (15/4) ⟹ α³ + β³ = (1 – 30)/8 ⟹ α³ + β³ = – 29/8 ∴ The value of α³ + β³ is – 29/8. Reply
Answer:
Given :-
To Find :-
Solution :-
Given equation :
[tex] \longmapsto[/tex] [tex] \sf 2{x}^{2} – x + 5 =\: 0[/tex]
where,
Now, we have to find the sum of two roots :
[tex] \mapsto \sf\boxed{\bold{\pink{\alpha + \beta =\: – \dfrac{b}{a}}}}[/tex]
Then,
[tex] \implies \sf \alpha + \beta =\: – \dfrac{- 1}{2}[/tex]
[tex] \implies \sf\bold{\purple{\alpha + \beta =\: \dfrac{1}{2}}}[/tex]
Again, we have to find the product of two roots :
[tex] \mapsto \sf\boxed{\bold{\pink{\alpha\beta =\: \dfrac{c}{a}}}}[/tex]
Then,
[tex] \implies \sf\bold{\purple{\alpha\beta =\: \dfrac{5}{2}}}[/tex]
Now, we have to find the value of α³ + β³ :
As we know that :
➦ a³ + b³ = (a + b)³ – 3ab(a + b)
According to the question by using the formula we get :
[tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: {(\alpha + \beta)}^{3} – 3\alpha\beta(\alpha + \beta)\\[/tex]
[tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: {\bigg(\dfrac{1}{2}\bigg)}^{3} – 3\bigg(\dfrac{5}{2}\bigg)\bigg(\dfrac{1}{2}\bigg)\\[/tex]
[tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – 3 \times \dfrac{5}{2} \times \dfrac{1}{2}\\[/tex]
[tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – 3 \times \dfrac{5}{4}\\[/tex]
[tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – \dfrac{15}{4}\\[/tex]
[tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1 – 30}{8}\\[/tex]
[tex] \leadsto \sf\bold{\red{{\alpha}^{3} + {\beta}^{3} =\: \dfrac{- 29}{8}}}\\[/tex]
[tex] \sf\boxed{\bold{\green{\therefore\: The\: value\: of\: {\alpha}^{3} + {\beta}^{3}\: is\: \dfrac{- 29}{8}.}}}[/tex]
Answer:-
Given:-
α and β are the roots of 2x² – x + 5.
On comparing the given polynomial with the standard form of a quadratic equation i.e., ax² + bx + c = 0 we get;
a = 2
b = – 1
c = 5.
We know that;
Sum of the roots = – b/a
⟹ α + β = – ( – 1) / 2
⟹ α + β = 1/2 — equation (1)
And,
product of the roots = c/a
⟹ αβ = 5/2 — equation (2)
Now,
we have to find:-
⟹ α³ + β³
We know that;
a³ + b³ = (a + b)³ – 3ab(a + b)
Hence;
⟹ α³ + β³ = (α + β)³ – 3αβ(α + β)
Putting the respective values from equations (1) and (2) we get;
⟹ α³ + β³ = (1/2)³ – 3(5/2)(1/2)
⟹ α³ + β³ = (1/8) – (15/4)
⟹ α³ + β³ = (1 – 30)/8
⟹ α³ + β³ = – 29/8
∴ The value of α³ + β³ is – 29/8.