factorise”
[tex]64a {}^{6} – b {}^{6} [/tex]
can you give me this ans in a simple way ​

factorise”
[tex]64a {}^{6} – b {}^{6} [/tex]
can you give me this ans in a simple way ​

About the author
Allison

2 thoughts on “factorise”<br />[tex]64a {}^{6} – b {}^{6} [/tex]<br />can you give me this ans in a simple way ​”

  1. Question :

    Factorise :

    [tex]\tt 64{a}^{2} – {b}^{2}[/tex]

    Identity :

    [tex]\tt {x}^{2} – {y}^{2} [/tex] = (x-y)(x+y)

    Solution :

    [tex] \tt 64{a}^{2} – {b}^{2} [/tex]

    [tex] \tt \implies {(8a)}^{2} – {b}^{2} [/tex]

    [tex]\tt \implies [/tex] (8a-b)(8a+b)

    [tex]\tt 64{a}^{2} – {b}^{2}[/tex] = (8a-b)(8a+b)

    Some other identities :

    ● [tex] \tt {(a+b)}^{2} = {a}^{2} + 2ab + {b}^{2} [/tex]

    ● [tex] \tt {(a-b)}^{2} = {a}^{2} – 2ab + {b}^{2} [/tex]

    ● [tex] \tt {(a+b)}^{3} = {a}^{3} + 3{a}^{2}b + 3a{b}^{2} + {b}^{3} [/tex]

    ● [tex] \tt {(a-b)}^{3} = {a}^{3} – 3{a}^{2}b + 3a{b}^{2} – {b}^{3} [/tex]

    Reply
  2. Answer:

    [tex]\huge \bold {\fbox{\underline \orange{ Answer \: ❦}}}[/tex]

    [tex]64 {a}^{2} – {b}^{2} = ({4a}^{2})^{3} – ({b}^{2})^{3} \\ \\ = ( {4a}^{2} – {b}^{2})(16 {a}^{4} + 4 {a}^{2} {b}^{2} + {b}^{4} ) \\ \\ = (2a + b)(2a – b) (16 {a}^{4} + 4 {a}^{2} {b}^{2} + {b}^{4} )[/tex]

    Reply

Leave a Comment