Factorisation –

[tex]1) \: \: \tt \: {x}^{2} – {4y}^{2} [/tex]
[tex]2) \: \: \tt \: {9a}^{2} {x}^{2} – 9

Factorisation –

[tex]1) \: \: \tt \: {x}^{2} – {4y}^{2} [/tex]
[tex]2) \: \: \tt \: {9a}^{2} {x}^{2} – 9 {b}^{3} [/tex]
[tex]3) \: \: \tt \: \frac{ {a}^{2} }{9} – \frac{ {b}^{4} }{16} [/tex]
[tex]4) \: \: \tt \: {48x}^{3} – 27x[/tex]
[tex]5) \: \: \tt \: 4 {a}^{2} b – 9 {b}^{3} [/tex]
[tex]6) \: \: \tt \: {a}^{2} – 81(b – c) ^{2} [/tex]
[tex]7) \: \: \tt \: {a}^{4} – 1[/tex]
[tex]8) \: \: \tt \: {9a}^{2} – ( {a}^{2} – 4) ^{2} [/tex]
[tex]9) \: \: \tt \: 2 {x}^{4} – 32[/tex]
[tex]10) \: \: \tt \: {16x}^{2} – {y}^{2} + 4yz – {4z}^{2} [/tex]

Please solve the above.

About the author
Quinn

2 thoughts on “Factorisation –<br /><br />[tex]1) \: \: \tt \: {x}^{2} – {4y}^{2} [/tex]<br />[tex]2) \: \: \tt \: {9a}^{2} {x}^{2} – 9”

  1. Solutions!!

    (1)

    x² – 4y²

    = x² – 2²y²

    = (x)² – (2y)²

    Use a² – b² = (a – b)(a + b).

    = (x – 2y)(x + 2y)

    (2)

    9a²x² – 9b³

    = 9(ax)² – 9b³

    = 9((ax)² – b³)

    (3)

    (a²/9) – (b⁴/16)

    = (16a² – 9b⁴)/144

    = (1/144)(16a² – 9b⁴)

    = (1/144)((4a)² – (3b²)²)

    Use a² – b² = (a – b)(a + b).

    = (1/144)(4a – 3b²)(4a + 3b²)

    (4)

    48x³ – 27x

    = 3x(16x² – 9)

    = 3x((4x)² – (3)²)

    Use a² – b² = (a – b)(a + b).

    = 3x(4x – 3)(4x + 3)

    (5)

    4a²b – 9b²

    = b(4a² – 9b)

    (6)

    a² -81(b – c)²

    Use a² – b² = (a – b)(a + b).

    = (a – 9(b – c))(a + 9(b – c))

    = (a – 9b + 9c)(a + 9b – 9c)

    (7)

    a⁴ – 1

    Use a² – b² = (a – b)(a + b).

    = (a² – 1)(a² + 1)

    Use a² – b² = (a – b)(a + b).

    = (a – 1)(a + 1)(a² + 1)

    (8)

    9a² – (a² – 4)²

    Use a² – b² = (a – b)(a + b).

    = (3a – (a² – 4))(3a + (a² – 4))

    = (3a – a² + 4)(3a + a² – 4)

    = (-a² + 3a + 4)(a² + 3a – 4)

    = (-a² + 4a – a + 4)(a² + 4a – a – 4)

    = (-a(a – 4) – (a – 4))(a(a + 4) – (a + 4))

    = (-(a – 4)(a + 1))(a + 4)(a – 1)

    = -(a – 4)(a + 1)(a + 4)(a – 1)

    (9)

    2x⁴ – 32

    = 2(x⁴ – 16)

    = 2((x²)² – (4)²)

    Use a² – b² = (a – b)(a + b).

    = 2(x² – 4)(x² + 4)

    Use a² – b² = (a – b)(a + b).

    = 2(x – 2)(x + 2)(x² + 4)

    (10)

    16x² – y² + 4yz – 4z²

    = 16x² – (y² – 4yz + 4z²)

    Use a² – 2ab + b² = (a – b)².

    = 16x² – (y – 2z)²

    Use a² – b² = (a – b)(a + b).

    = (4x – (y – 2z))(4x + (y – 2z))

    = (4x – y + 2z)(4x + y – 2z)

    Reply
  2. Answer:

    Factorisation –

    [tex]1) \: \: \tt \: {x}^{2} – {4y}^{2} [/tex]

    [tex]2) \: \: \tt \: {9a}^{2} {x}^{2} – 9 {b}^{3} [/tex]

    [tex]3) \: \: \tt \: \frac{ {a}^{2} }{9} – \frac{ {b}^{4} }{16} [/tex]

    [tex]4) \: \: \tt \: {48x}^{3} – 27x[/tex]

    [tex]5) \: \: \tt \: 4 {a}^{2} b – 9 {b}^{3} [/tex]

    [tex]6) \: \: \tt \: {a}^{2} – 81(b – c) ^{2} [/tex]

    [tex]7) \: \: \tt \: {a}^{4} – 1[/tex]

    [tex]8) \: \: \tt \: {9a}^{2} – ( {a}^{2} – 4) ^{2} [/tex]

    [tex]9) \: \: \tt \: 2 {x}^{4} – 32[/tex]

    [tex]10) \: \: \tt \: {16x}^{2} – {y}^{2} + 4yz – {4z}^{2} [/tex]

    Please solve the above. not simple please brainliest answers

    Reply

Leave a Comment