Answer: [tex] {( \frac{2}{5}) }^{ – 4} \\ [/tex] Step-by-step explanation: [tex]( \frac{2}{5} ) ^{ – 2} \times {( \frac{2}{5} )}^{ – 2} \\ = {( \frac{2}{5} )}^{ – 2 + ( – 2)} \\ = {( \frac{2}{5} )}^{ – 2 – 2} \\ = {( \frac{2}{5} )}^{ – 4} [/tex] it done by the formula :– [tex] {x}^{m} \times {x}^{n} = {x}^{m + n} [/tex] Where bases are same and we have to multiply them, we will add the powers. more formulas to remember :– [tex] {x}^{m} \div {x}^{n} = {x}^{m – n} \\ ( {x}^{m} )^{n} = {x}^{m \times n} [/tex] hope it helps. Reply
Answer:
[tex] {( \frac{2}{5}) }^{ – 4} \\ [/tex]
Step-by-step explanation:
[tex]( \frac{2}{5} ) ^{ – 2} \times {( \frac{2}{5} )}^{ – 2} \\ = {( \frac{2}{5} )}^{ – 2 + ( – 2)} \\ = {( \frac{2}{5} )}^{ – 2 – 2} \\ = {( \frac{2}{5} )}^{ – 4} [/tex]
it done by the formula :–
[tex] {x}^{m} \times {x}^{n} = {x}^{m + n} [/tex]
Where bases are same and we have to multiply them, we will add the powers.
more formulas to remember :–
[tex] {x}^{m} \div {x}^{n} = {x}^{m – n} \\ ( {x}^{m} )^{n} = {x}^{m \times n} [/tex]
hope it helps.