by what least integer must 4/5 be multiplied so that the product may be a positive integer? solve the sum About the author Nevaeh
Answer: sinθ+cosθ=a secθ+cscθ=b \sf\underline \red{ To\:Find} ToFind We have to find the value of b(a²-1) \sf\underline \pink{ Solution } Solution By putting the given values \begin{gathered}:\implies\sf\ \ b(a^2-1)\\ \\ \\ :\implies\sf\ \ sec\theta+csc\theta\big\{(sin\theta+cos\theta)^2-1)\big\}\\ \\ \\ \bullet\sf\ sec\theta=\dfrac{1}{cos\theta}\ \ ;\ csc\theta=\dfrac{1}{sin\theta}\\ \\ \\ :\implies\sf\ \dfrac{1}{cos\theta}+\dfrac{1}{sin\theta}\big\{sin^2\theta+cos^2\theta+2sin\theta cos\theta-1\big\}\\ \\ \\ \bullet\sf\ \ sin^2\theta+cos^2\theta=1\\ \\ \\ :\implies\sf\dfrac{sin\theta+cos\theta}{sin\theta\ cos\theta}\big\{\cancel{1}+2sin\theta\ cos\theta \cancel{-1}\big\}\\ \\ \\ :\implies\sf\ \dfrac{sin\theta+cos\theta}{\cancel{sin\theta cos\theta}}\times 2\cancel{sin\theta cos\theta}\\ \\ \\ :\implies\sf\ \ 2(sin\theta+cos\theta)\end{gathered} :⟹ b(a 2 −1) :⟹ secθ+cscθ{(sinθ+cosθ) 2 −1)} ∙ secθ= cosθ 1 ; cscθ= sinθ 1 :⟹ cosθ 1 + sinθ 1 {sin 2 θ+cos 2 θ+2sinθcosθ−1} ∙ sin 2 θ+cos 2 θ=1 :⟹ sinθ cosθ sinθ+cosθ { 1 +2sinθ cosθ −1 } :⟹ sinθcosθ sinθ+cosθ ×2 sinθcosθ :⟹ 2(sinθ+cosθ) \underline{\bigstar{\blue{\sf\ \ b(a^2-1)= 2(sin\theta+cos\theta)}}} ★ b(a 2 −1)=2(sinθ+cosθ Reply
by what least integer must 4/5 be multiplied so that the product may be a positive integer? solve the sum Reply
Answer:
sinθ+cosθ=a
secθ+cscθ=b
\sf\underline \red{ To\:Find}
ToFind
We have to find the value of b(a²-1)
\sf\underline \pink{ Solution }
Solution
By putting the given values
\begin{gathered}:\implies\sf\ \ b(a^2-1)\\ \\ \\ :\implies\sf\ \ sec\theta+csc\theta\big\{(sin\theta+cos\theta)^2-1)\big\}\\ \\ \\ \bullet\sf\ sec\theta=\dfrac{1}{cos\theta}\ \ ;\ csc\theta=\dfrac{1}{sin\theta}\\ \\ \\ :\implies\sf\ \dfrac{1}{cos\theta}+\dfrac{1}{sin\theta}\big\{sin^2\theta+cos^2\theta+2sin\theta cos\theta-1\big\}\\ \\ \\ \bullet\sf\ \ sin^2\theta+cos^2\theta=1\\ \\ \\ :\implies\sf\dfrac{sin\theta+cos\theta}{sin\theta\ cos\theta}\big\{\cancel{1}+2sin\theta\ cos\theta \cancel{-1}\big\}\\ \\ \\ :\implies\sf\ \dfrac{sin\theta+cos\theta}{\cancel{sin\theta cos\theta}}\times 2\cancel{sin\theta cos\theta}\\ \\ \\ :\implies\sf\ \ 2(sin\theta+cos\theta)\end{gathered}
:⟹ b(a
2
−1)
:⟹ secθ+cscθ{(sinθ+cosθ)
2
−1)}
∙ secθ=
cosθ
1
; cscθ=
sinθ
1
:⟹
cosθ
1
+
sinθ
1
{sin
2
θ+cos
2
θ+2sinθcosθ−1}
∙ sin
2
θ+cos
2
θ=1
:⟹
sinθ cosθ
sinθ+cosθ
{
1
+2sinθ cosθ
−1
}
:⟹
sinθcosθ
sinθ+cosθ
×2
sinθcosθ
:⟹ 2(sinθ+cosθ)
\underline{\bigstar{\blue{\sf\ \ b(a^2-1)= 2(sin\theta+cos\theta)}}}
★ b(a
2
−1)=2(sinθ+cosθ
by what least integer must 4/5 be multiplied so that the product may be a positive integer? solve the sum