Ayush and Rahul together complete a work in half of time of veer,while Ayush and veer together can complete same work in 1/3rd time of Rahul .if they together complete a piece of work in 30days.then in how many days Rahul can alone complete the work.
[tex]\large\underline{\sf{Solution-}}[/tex]
Let
So,
[tex]\rm :\longmapsto\: \: Ayush \: 1 \: day \: work \: = \dfrac{1}{x} [/tex]
[tex]\rm :\longmapsto\: \: Rahul \: 1 \: day \: work = \dfrac{1}{y} [/tex]
[tex]\rm :\longmapsto\: \: Veer \: 1 \: day \: work = \dfrac{1}{z} [/tex]
Now,
According to statement,
So, there 1 day work is
[tex]\rm :\longmapsto\:\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{2}{z} – – – (1)[/tex]
Also, given that
So, there 1 day work is
[tex]\rm :\longmapsto\:\dfrac{1}{x} + \dfrac{1}{z} = \dfrac{3}{y} – – – (2)[/tex]
Also, given that
So, there 1 day work is
[tex]\rm :\longmapsto\:\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = \dfrac{1}{30} [/tex]
[tex]\rm :\longmapsto\:\dfrac{2}{z} + \dfrac{1}{z} = \dfrac{1}{30} \: \: \: \: \: \: \{using \: (1) \}[/tex]
[tex]\rm :\longmapsto\:\dfrac{3}{z} = \dfrac{1}{30} [/tex]
[tex]\bf\implies \:z \: = \: 90 – – – (4)[/tex]
Now,
On Subtracting equation (2) from equation (1), we get
[tex]\rm :\longmapsto\:\dfrac{1}{y} – \dfrac{1}{z} = \dfrac{2}{z} – \dfrac{3}{y} [/tex]
[tex]\rm :\longmapsto\:\dfrac{4}{y} = \dfrac{3}{z} [/tex]
[tex]\rm :\longmapsto\:\dfrac{4}{y} = \dfrac{3}{90} \: \: \: \: \: \: \: \{ \because \: z = 90 \}[/tex]
[tex]\rm :\longmapsto\:\dfrac{4}{y} = \dfrac{1}{30} [/tex]
[tex]\bf\implies \:y = 120[/tex]
[tex]\bf\implies \:Rahul \: alone \: take \: 120 \: days \: to \: finish \: the \: work.[/tex]
Answer:
22.5 days
Step-by-step explanation:
let time required to do work by rahul is x
by ayush is y
by veer is z
given x+y=z/2
y+z=x/3..²
and x+y+z=30 days
from ²
x+x/3=30
4x/3=30
4x=90
x=90/4
x=22.5
hope my answer helps you