2 thoughts on “area of a rectangle is (3a^2+5ab+2b^2) one of its side is (a+b) what is the perimeter”
Concept used-:
~Here the concept of Area & perimetre is used. By using the area formula of rectangle we will find the length. Then after súbsitúte the value of length and breath in the Perimeter formula.
Concept used-:
~Here the concept of Area & perimetre is used. By using the area formula of rectangle we will find the length. Then after súbsitúte the value of length and breath in the Perimeter formula.
Formula used
[tex] \to \bold\pink {Area\:of \:rectangle= length×breath}[/tex]
[tex]\to\bold \purple{Perimeter\:of \: rectangle=2×(length×breath)}[/tex]
Solution
Let us assume the length as L
Area of rectangle= length× breath
[tex]\sf{\implies3a²+5ab+2b² =L× (a+b)}\\ \\ \sf{ \implies L= \frac{3a²+5ab+2b²}{a+b}} \\ \\ \sf{ \implies \red{L = 3a+2b\:units }}[/tex]
therefore the length of the rectangle is 3a+2b units
Now let us find the perimeter.
perimeter of rectangle=2×( length+breath)
[tex]\sf{ \implies perimeter \: of \: rectangle= 2×(3a+2b +(a+b))}[/tex]
[tex]\sf{ \implies perimeter \: of \: rectangle= 2× (4a+3b)} \\ \\ \sf{ \implies \green{perimeter \: of \: rectangle = 8a +6b\:units}}[/tex]
Therefore the perimetre of the rectangle is 8a +6b units
—————————————————–
Given:-
To Find:-
Solution:-
Here, Area of rectangle = Length × Breadth
Let the another side be [tex]x[/tex] units.
Now, [tex]a + b \times x = 3a^{2} + 5ab + 3b^{2}[/tex]
⇒ [tex]x = \dfrac{3a^{2} + 5ab + 2b^{2}}{a + b}[/tex]
⇒ [tex]x = 3a + 2b[/tex]
So, Another side of rectangle will be 3a + 2b units.
Since, Perimeter of rectangle = [tex]2 ( L + B )[/tex]
⇒ [tex]2 [(a + b) + (3a + 2b)][/tex]
⇒ [tex]2 \times ( 4a + 3b )[/tex]
⇒ [tex]8a + 6b[/tex]
Hence, Perimeter of the rectangle is 8a + 6b units .
Some Important terms:-