An arc ofa circle is of length 7n em and the sector it bounds has an area of 28t cm?. Find the radius of the circle. About the author Liliana
Step-by-step explanation: Arc of circle of length = 7π cm. [tex]sector \: it \: bounds \: has \: an \: area \: = 28\pi \: {cm}^{2}.[/tex] Radius of circle = ? We know that [tex]length \: of \: an \: arc \: of \: circle \: \frac{2\pi r θ }{360 {}^{0} } [/tex] Therefore, [tex]7\pi \ = \frac{2\pi r θ }{ {360}^{0} } [/tex] [tex]r θ = {180}^{0} \times 7[/tex] [tex]θ = \frac{1260}{r}…. (1) [/tex] And [tex]area \: of \: sector \: = \frac{\pi \: r {}^{2} θ}{ {360}^{0} } [/tex] [tex]28\pi \times \frac{\pi \: r^{2} θ}{ {360}^{0} } [/tex] [tex] {r}^{2} θ \: = 28 \times {360}^{0} [/tex] [tex]θ = \frac{28 \times {360}^{0} }{ {r}^{2} } ….(2)[/tex] From (1) and (2) to and we get, [tex] \frac{1260}{r} = \frac{28 \times 360 {}^{0} }{ {r}^{2} } [/tex] [tex]r \times \frac{28 \times {360}^{0} }{1260} [/tex] [tex]r \: = 8c.m[/tex] Hence, this is the answer Reply
Step-by-step explanation:
Arc of circle of length = 7π cm.
[tex]sector \: it \: bounds \: has \: an \: area \: = 28\pi \: {cm}^{2}.[/tex]
Radius of circle = ?
We know that
[tex]length \: of \: an \: arc \: of \: circle \: \frac{2\pi r θ }{360 {}^{0} } [/tex]
Therefore,
[tex]7\pi \ = \frac{2\pi r θ }{ {360}^{0} } [/tex]
[tex]r θ = {180}^{0} \times 7[/tex]
[tex]θ = \frac{1260}{r}…. (1) [/tex]
And
[tex]area \: of \: sector \: = \frac{\pi \: r {}^{2} θ}{ {360}^{0} }
[/tex]
[tex]28\pi \times \frac{\pi \: r^{2} θ}{ {360}^{0} } [/tex]
[tex] {r}^{2} θ \: = 28 \times {360}^{0} [/tex]
[tex]θ = \frac{28 \times {360}^{0} }{ {r}^{2} } ….(2)[/tex]
From (1) and (2) to and we get,
[tex] \frac{1260}{r} = \frac{28 \times 360 {}^{0} }{ {r}^{2} } [/tex]
[tex]r \times \frac{28 \times {360}^{0} }{1260} [/tex]
[tex]r \: = 8c.m[/tex]
Hence, this is the answer