A square + b square + c square minus a minus b c minus A into a + b + c

A square + b square + c square minus a minus b c minus A into a + b + c

About the author
Evelyn

1 thought on “A square + b square + c square minus a minus b c minus A into a + b + c”

  1. a² + b² + c² = ab + bc + ca

    On multiplying both sides by ‘2’, it becomes

    2 ( a² + b² + c² ) = 2 ( ab + bc + ca)

    2a² + 2b² + 2c² = 2ab + 2bc + 2ca

    a² + a² + b² + b² + c² + c² – 2ab – 2bc – 2ca = 0

    a² + b² – 2ab + b² + c² – 2bc + c² + a² – 2ca = 0

    (a² + b² – 2ab) + (b² + c² – 2bc) + (c² + a² – 2ca) = 0

    (a – b)² + (b – c)² + (c – a)² = 0

    => Since the sum of square is zero then each term should be zero

    ⇒ (a –b)² = 0, (b – c)² = 0, (c – a)² = 0

    ⇒ (a –b) = 0, (b – c) = 0, (c – a) = 0

    ⇒ a = b, b = c, c = a

    ∴ a = b = c.

    Reply

Leave a Comment