A shopkeeper sells an article for Rs. 2400 for loss of 4%.Find the CP. Also find the SP at which he should have sold in order to get 8% profit. About the author Lydia
Given Seliing price (SP)=Rs.2400 Loss%= 4% To Find Cost price (CP) the SP at which he should have sold in order to get 8% profit. ___________________________ Formula Used [tex] \boxed{ \pink{\sf CP= \left(\dfrac{SP×100}{100-Loss \%} \right)}}[/tex] [tex]\boxed{\pink{\sf SP= \left( \dfrac{100+P \%}{100} \right) × CP}}[/tex] _____________________ Solution Here’s SP= Rs.2400 Loss=4% On putting the value of SP and Loss In Formula We get, [tex]\\{\implies\sf CP= \left(\dfrac{2400×100}{100-4} \right)}[/tex] [tex]{\implies\sf CP= \dfrac{240000}{96} }[/tex] [tex]{~~~~~~~~~\sf CP= 2500}\\\\[/tex] Now We Need To Find SP at which he should have sold in order to get 8% profit. CP= Rs.2500 Profit = 8% On Subtuting The value of CP and Profit In Formula we get, [tex]\\{\implies\sf SP= \left( \dfrac{100+8}{100} \right) × 2500}[/tex] [tex]{\implies\sf SP= \ \dfrac{108}{100} × 2500}[/tex] [tex]{\implies\sf SP= 108 × 25}[/tex] [tex]~~~~~~~~~~\sf SP= 2700\\\\\\\\[/tex] Cost price=Rs.2500 Selling Price at which he should have sold in order to get 8% Profit =Rs.2700 More Useful Formula [tex]\boxed{\begin{minipage}{5cm}\bigstar$\:\underline{\textbf{Profit and Loss Formulas :}}\\\\ \\ \sf {\textcircled{\footnotesize\textsf{1}}} \:S.P. =$\sf \bigg\lgroup\dfrac{100 + Profit \%}{100}\bigg\rgroup \times CP$\\\\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:C.P. = $\sf \dfrac{S.P. \times 100}{100 + Profit \%}$\\\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Profit = $\sf \dfrac{Profit \% \times C.P.}{100}$\\\\\\ \sf{\textcircled{\footnotesize\textsf{4}}} \: \:Profit (gain) = S.P. – C.P. \\\\\\\sf{\textcircled{\footnotesize\textsf{5}}} \: \:$\sf Profit \% = \dfrac{Profit}{C.P.} \times 100$\end{minipage}}[/tex] Reply
Step-by-step explanation:
YOUR ANSWER IS IN THE ATTACHMENT
MARK ME AS BRAINLIEST
Given
To Find
___________________________
Formula Used
_____________________
Solution
Here’s
SP= Rs.2400
Loss=4%
On putting the value of SP and Loss In Formula We get,
[tex]\\{\implies\sf CP= \left(\dfrac{2400×100}{100-4} \right)}[/tex]
[tex]{\implies\sf CP= \dfrac{240000}{96} }[/tex]
[tex]{~~~~~~~~~\sf CP= 2500}\\\\[/tex]
Now
We Need To Find
CP= Rs.2500
Profit = 8%
On Subtuting The value of CP and Profit In Formula we get,
[tex]\\{\implies\sf SP= \left( \dfrac{100+8}{100} \right) × 2500}[/tex]
[tex]{\implies\sf SP= \ \dfrac{108}{100} × 2500}[/tex]
[tex]{\implies\sf SP= 108 × 25}[/tex]
[tex]~~~~~~~~~~\sf SP= 2700\\\\\\\\[/tex]
More Useful Formula
[tex]\boxed{\begin{minipage}{5cm}\bigstar$\:\underline{\textbf{Profit and Loss Formulas :}}\\\\ \\ \sf {\textcircled{\footnotesize\textsf{1}}} \:S.P. =$\sf \bigg\lgroup\dfrac{100 + Profit \%}{100}\bigg\rgroup \times CP$\\\\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:C.P. = $\sf \dfrac{S.P. \times 100}{100 + Profit \%}$\\\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Profit = $\sf \dfrac{Profit \% \times C.P.}{100}$\\\\\\ \sf{\textcircled{\footnotesize\textsf{4}}} \: \:Profit (gain) = S.P. – C.P. \\\\\\\sf{\textcircled{\footnotesize\textsf{5}}} \: \:$\sf Profit \% = \dfrac{Profit}{C.P.} \times 100$\end{minipage}}[/tex]