A positive number is 5 time another number. If 21 is added to both the numbers, then one of the new numbers become twice of other new numbers. Find the original numbers. About the author Peyton
[tex]\bf Given \:\:: \begin{cases}\sf A\: positive\: number\: is\: 5 \:time \:another\: number\:.\\\\ \qquad \bf AND \:, \:\\\\ \sf 21 \:is \:added \:to\: both\: the\: numbers,\: then\: one\: of \:the \:new\: numbers\:\\ \qquad \sf become\: twice \:of \:other\: new \:numbers\: .\end{cases}\\[/tex] Exigency To Find : The Original number . ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ⠀⠀❍ Let’s Assume the other number be a . ⠀⠀Therefore, ⠀⠀⠀⠀ For positive umber , Given that ; ⠀⠀⠀⠀⠀⠀▪︎⠀⠀A positive number is 5 times another number. [tex]\qquad :\implies \sf Positive \:number \:\: \: 5 \times Other\;number \: \\[/tex] [tex]\qquad :\implies \sf Positive \:number \:\:= \: 5 \times a \: \\[/tex] [tex]\qquad :\implies \sf Positive \:number \:\:= \: 5a \: \\[/tex] [tex]\qquad \therefore \:\:\underline{\pmb{\pink{\: Positive \:number \:\:= \: 5a }} }\:\:\bigstar \\[/tex] ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:According \:\: to \:\: Question \: \: \::}}\\[/tex] ⠀━━ If 21 is added to both the numbers, then one of the new numbers become twice of other new numbers. [tex]\qquad:\implies \sf 21 + Positive \:number \: = \: 2 \ ( \ Other\:number \:+ \:21 \ ) \\[/tex] [tex]\qquad:\implies \sf 21 + 5a \: = \: 2 \ ( \ a \:+ \:21 \ ) \\[/tex] [tex]\qquad:\implies \sf 21 + 5a \: = \: 2 a \:+ \:42 \ \\[/tex] [tex]\qquad:\implies \sf 5a \: = \: 2 a \:+ \:42 \ – 21 \: \\[/tex] [tex]\qquad:\implies \sf 5a \: = \: 2 a \:+ \: 21 \: \\[/tex] [tex]\qquad:\implies \sf 5a – \:2a \: = \: \: 21 \: \\[/tex] [tex]\qquad:\implies \sf 3a \: = \: \: 21 \: \\[/tex] [tex]\qquad:\implies \sf a \: = \: \: \dfrac{21}{3} \: \\[/tex] [tex]\qquad:\implies \sf a \: = \: \:\cancel {\dfrac{21}{3} }\: \\[/tex] [tex]\qquad:\implies \sf a \: = \: \: 7 \: \\[/tex] [tex]\qquad \therefore\:\: \underline{\pmb{\pink{\: a \: = \: \: 7 \: }} }\:\:\bigstar \\[/tex] ⠀⠀⠀⠀⠀⠀▪︎⠀⠀Here , a denotes Other number which is 7 . ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀AND , ⠀⠀⠀⠀⠀⠀▪︎⠀⠀The Positive number is 5a = 5 × 7 = 35 . ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \sf \:Hence, \:The \: \:numbers\:are\:\bf 7 \:\:\sf and \: \bf 35 \:\sf, \:respectively\: .}}\\[/tex] Reply
❍ Let’s say, that the other number be x. Given that, A positive number is five times the other Number. ➟ Postive no. = 5 × (Other no.) ➟ Positive number = 5x ⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━ [tex]\underline{\bigstar\:\boldsymbol{By \; given \: Condition\;:}}[/tex]⠀⠀ And it is given that, If 21 is added to both the numbers, then one of the new number become twice of other new numbers. ⠀ ✰ Adding 21 to both numbers — Other no. = (x + 21) Postive no. = (5x + 21) ⠀⠀⠀ Therefore, ⠀⠀⠀ [tex]:\implies\sf 5x + 21 = 2(x + 21)\\\\\\:\implies\sf 5x + 21 = 2x + 42\\\\\\:\implies\sf 5x – 2x = 42 – 21\\\\\\:\implies\sf 3x = 21\\\\\\:\implies\sf x = \cancel\dfrac{21}{3}\\\\\\:\implies\underline{\boxed{\frak{\purple{x = 7}}}}\;\bigstar[/tex] ⠀⠀⠀ Hence, Other number, x = 7 Postive number, 5x = 5(7) = 35 ⠀⠀ [tex]\therefore{\underline{\textsf{Hence, the original numbers are \textbf{7}\:\sf{and}\;\textbf{35}\: \sf{respectively.}}}}[/tex]⠀⠀⠀⠀⠀⠀ Reply
[tex]\bf Given \:\:: \begin{cases}\sf A\: positive\: number\: is\: 5 \:time \:another\: number\:.\\\\ \qquad \bf AND \:, \:\\\\ \sf 21 \:is \:added \:to\: both\: the\: numbers,\: then\: one\: of \:the \:new\: numbers\:\\ \qquad \sf become\: twice \:of \:other\: new \:numbers\: .\end{cases}\\[/tex]
Exigency To Find : The Original number .
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀❍ Let’s Assume the other number be a .
⠀⠀Therefore,
⠀⠀⠀⠀ For positive umber , Given that ;
⠀⠀⠀⠀⠀⠀▪︎⠀⠀A positive number is 5 times another number.
[tex]\qquad :\implies \sf Positive \:number \:\: \: 5 \times Other\;number \: \\[/tex]
[tex]\qquad :\implies \sf Positive \:number \:\:= \: 5 \times a \: \\[/tex]
[tex]\qquad :\implies \sf Positive \:number \:\:= \: 5a \: \\[/tex]
[tex]\qquad \therefore \:\:\underline{\pmb{\pink{\: Positive \:number \:\:= \: 5a }} }\:\:\bigstar \\[/tex]
⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:According \:\: to \:\: Question \: \: \::}}\\[/tex]
⠀━━ If 21 is added to both the numbers, then one of the new numbers become twice of other new numbers.
[tex]\qquad:\implies \sf 21 + Positive \:number \: = \: 2 \ ( \ Other\:number \:+ \:21 \ ) \\[/tex]
[tex]\qquad:\implies \sf 21 + 5a \: = \: 2 \ ( \ a \:+ \:21 \ ) \\[/tex]
[tex]\qquad:\implies \sf 21 + 5a \: = \: 2 a \:+ \:42 \ \\[/tex]
[tex]\qquad:\implies \sf 5a \: = \: 2 a \:+ \:42 \ – 21 \: \\[/tex]
[tex]\qquad:\implies \sf 5a \: = \: 2 a \:+ \: 21 \: \\[/tex]
[tex]\qquad:\implies \sf 5a – \:2a \: = \: \: 21 \: \\[/tex]
[tex]\qquad:\implies \sf 3a \: = \: \: 21 \: \\[/tex]
[tex]\qquad:\implies \sf a \: = \: \: \dfrac{21}{3} \: \\[/tex]
[tex]\qquad:\implies \sf a \: = \: \:\cancel {\dfrac{21}{3} }\: \\[/tex]
[tex]\qquad:\implies \sf a \: = \: \: 7 \: \\[/tex]
[tex]\qquad \therefore\:\: \underline{\pmb{\pink{\: a \: = \: \: 7 \: }} }\:\:\bigstar \\[/tex]
⠀⠀⠀⠀⠀⠀▪︎⠀⠀Here , a denotes Other number which is 7 .
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀AND ,
⠀⠀⠀⠀⠀⠀▪︎⠀⠀The Positive number is 5a = 5 × 7 = 35 .
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \sf \:Hence, \:The \: \:numbers\:are\:\bf 7 \:\:\sf and \: \bf 35 \:\sf, \:respectively\: .}}\\[/tex]
❍ Let’s say, that the other number be x.
Given that,
➟ Postive no. = 5 × (Other no.)
➟ Positive number = 5x
⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━
[tex]\underline{\bigstar\:\boldsymbol{By \; given \: Condition\;:}}[/tex]⠀⠀
⠀
✰ Adding 21 to both numbers —
⠀⠀⠀
Therefore,
⠀⠀⠀
[tex]:\implies\sf 5x + 21 = 2(x + 21)\\\\\\:\implies\sf 5x + 21 = 2x + 42\\\\\\:\implies\sf 5x – 2x = 42 – 21\\\\\\:\implies\sf 3x = 21\\\\\\:\implies\sf x = \cancel\dfrac{21}{3}\\\\\\:\implies\underline{\boxed{\frak{\purple{x = 7}}}}\;\bigstar[/tex]
⠀⠀⠀
Hence,
⠀⠀
[tex]\therefore{\underline{\textsf{Hence, the original numbers are \textbf{7}\:\sf{and}\;\textbf{35}\: \sf{respectively.}}}}[/tex]⠀⠀⠀⠀⠀⠀