a point charge of q of mass m is placed at centre of a fixed ring of charge Q and radius R. what minimum velocity should be given to q so that it would reach far away from ring (i) if q is positive About the author Maria
Given that, ⟩ Charge of ring = Q ⟩ Charge of particle = q ⟩ Mass of particle = m ⟩ Radius of ring = R We have to find magnitude of minimum required velocity which pushes point charge far away from ring[tex].[/tex] ❖ This question is completely based on the concept of mechanical energy conservation. [tex]\sf\dashrightarrow\:U_1+K_1=U_2+K_2[/tex] [tex]\sf\dashrightarrow\:\dfrac{1}{4\pi\epsilon_o}\cdot\dfrac{Qq}{R}+0=0+\dfrac{1}{2}mv^2[/tex] [tex]\sf\dashrightarrow\:v^2=\dfrac{2}{4\pi\epsilon_o}\cdot\dfrac{Qq}{mR}[/tex] [tex]\sf\dashrightarrow\:v^2=\dfrac{1}{2\pi\epsilon_o}\cdot\dfrac{Qq}{mR}[/tex] [tex]\dashrightarrow\:\underline{\boxed{\bf{\orange{v=\sqrt{\dfrac{1}{2\pi\epsilon_o}\cdot\dfrac{Qq}{mR}}}}}}[/tex] Reply
Given that,
⟩ Charge of ring = Q
⟩ Charge of particle = q
⟩ Mass of particle = m
⟩ Radius of ring = R
We have to find magnitude of minimum required velocity which pushes point charge far away from ring[tex].[/tex]
❖ This question is completely based on the concept of mechanical energy conservation.
[tex]\sf\dashrightarrow\:U_1+K_1=U_2+K_2[/tex]
[tex]\sf\dashrightarrow\:\dfrac{1}{4\pi\epsilon_o}\cdot\dfrac{Qq}{R}+0=0+\dfrac{1}{2}mv^2[/tex]
[tex]\sf\dashrightarrow\:v^2=\dfrac{2}{4\pi\epsilon_o}\cdot\dfrac{Qq}{mR}[/tex]
[tex]\sf\dashrightarrow\:v^2=\dfrac{1}{2\pi\epsilon_o}\cdot\dfrac{Qq}{mR}[/tex]
[tex]\dashrightarrow\:\underline{\boxed{\bf{\orange{v=\sqrt{\dfrac{1}{2\pi\epsilon_o}\cdot\dfrac{Qq}{mR}}}}}}[/tex]