A fish swimming at a constant speed of 0.5 m/s suddenly notices a shark appear behind it. 5 seconds later, the fish swimming in the same direction at a speed of 2.5 m/s. Calculate the fish’s acceleration. *
2 thoughts on “A fish swimming at a constant speed of 0.5 m/s suddenly notices a shark appear behind it. 5 seconds later, the fish swimming in t”
Given: A fish swimming at a constant speed of 0.5 m/s [ as , Initial Velocity (u) ] , After noticing the shark fish’s speed is 2.5 m/s [ as , Final Velocity ( v ) ] & Time taken is 5seconds [ as , Time ( t) ]
ExigencyToFind:The Acceleration of fish ?
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀Given that ,
⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀The initial velocity ( u ) of fish is 0.5 m/s .
⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀The final velocity ( v ) of fish is 2.5 m/s
⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀Total Time taken ( t) is 5 seconds
⠀⠀⠀⠀⠀⠀⠀Finding Acceleration of fish :
[tex]\dag\:\:\pmb{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar \:\: \bf Acceleration \: : \: \sf The \: rate \:of \: of \: change \:of\: velocity\:is \:known \: as \: Acceleration \:. \:\\\\ \qquad\maltese\:\:\bf Formula \:for \: Acceleration\:: \\[/tex]
[tex]\qquad \dag\:\:\bigg\lgroup \pmb{\bf{\;\: Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\:\: }}\bigg\rgroup \\\\[/tex]
⠀⠀⠀⠀Here , uis the Initial velocity, vis the final velocity & tis the time taken .
[tex]\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\qquad \:\\\\[/tex]
⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex]
[tex]\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\qquad \:\\\\[/tex]
Given : A fish swimming at a constant speed of 0.5 m/s [ as , Initial Velocity ( u ) ] , After noticing the shark fish’s speed is 2.5 m/s [ as , Final Velocity ( v ) ] & Time taken is 5 seconds [ as , Time ( t ) ]
Exigency To Find : The Acceleration of fish ?
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀Given that ,
⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀The initial velocity ( u ) of fish is 0.5 m/s .
⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀The final velocity ( v ) of fish is 2.5 m/s
⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀Total Time taken ( t ) is 5 seconds
⠀⠀⠀⠀⠀⠀⠀Finding Acceleration of fish :
[tex]\dag\:\:\pmb{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar \:\: \bf Acceleration \: : \: \sf The \: rate \:of \: of \: change \:of\: velocity\:is \:known \: as \: Acceleration \:. \:\\\\ \qquad\maltese\:\:\bf Formula \:for \: Acceleration\:: \\[/tex]
[tex]\qquad \dag\:\:\bigg\lgroup \pmb{\bf{\;\: Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\:\: }}\bigg\rgroup \\\\[/tex]
⠀⠀⠀⠀Here , u is the Initial velocity, v is the final velocity & t is the time taken .
[tex]\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\qquad \:\\\\[/tex]
⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex]
[tex]\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\qquad \:\\\\[/tex]
[tex]\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: 2.5 \:\:- \:\:0.5\:\:}{5}\qquad \:\\\\[/tex]
[tex]\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: 2\:\:}{5}\qquad \:\\\\[/tex]
[tex]\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\cancel {\dfrac{ \:\: 2\:\:}{5}}\qquad \:\\\\[/tex]
[tex]\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:0.4 \:\qquad \:\\\\[/tex]
[tex]\qquad \therefore \pmb{\underline{\purple{\frak{ \:Acceleration\:(a)\:=\:0.4 \:m/s^2 }}} }\:\:\bigstar \\[/tex]
[tex]\therefore \:\underline { \sf Hence , \:\: The \:Acceleration \:of\:fish\:is \: \bf 0.4 \: m/s^2 \:}.\\\\[/tex]
Answer:
The acceleration of the fish is 0.4 m/s².
Explanation:
Fish was swimming at the speed of = 0.5 m/s
Time = 5 seconds
Fish’s speed after noticing the shark = 2.5 m/s
Acceleration of the fish = ??
_____________________________
[tex]\bigstar \: {\boxed{\sf{ Acceleration = \dfrac{v – u}{t}}}}[/tex]
[tex]\sf{\longrightarrow} \: \dfrac{2.5 – 0.5}{5} [/tex]
[tex]\sf{\longrightarrow} \: \dfrac{2}{5} [/tex]
[tex]\sf{\longrightarrow} \: 0.4 \: {ms}^{ – 2} [/tex]
Acceleration of the fish = 0.4 m/s²
Therefore, the acceleration of the fish is 0.4 m/s².