A CUBOID WITH DIMENSIONS 28 cm, BY ,x ,cm BY 15 cm HAS VOLUME OF 6720 CUBIC CENTIMETER.FIND MISSING BREADTH ,THEN WORKOUT SURFACE AREA OF CUBOID. About the author Gianna
Answer: Breadth of the cuboid = 16 cm Total surface area of the cuboid = 2216 cm² Step-by-step explanation: Given that: Dimensions of a cuboid are 28 cm, x cm and 15 cm. Volume of the cuboid is 6720 cm³. To Find: Breadth of the cuboid. Surface area of the cuboid. Solution: As we know that, Volume of a cuboid = (length × breadth × height) cubic units Substituting the values, [tex]\rm{\longmapsto6720=28\times x\times15}[/tex] [tex]\rm{\longmapsto6720=420x}[/tex] [tex]\rm{\longmapsto\dfrac{6720}{420}=x}[/tex] [tex]\rm{\longmapsto16=x}[/tex] [tex]\rm{\longmapsto x = 16}[/tex] Hence, x = 16 Therefore, Breadth of the cuboid is 16 cm. Now, As we know that, Total surface area of cuboid = 2(lb + bh + lh) sq. units Substituting the values, [tex]\sf{\longmapsto2\{(28\times16)+(16\times15)+(28\times15)\}}[/tex] [tex]\sf{\longmapsto2\{448+240+420\}}[/tex] [tex]\sf{\longmapsto2\times1108}[/tex] [tex]\sf{\longmapsto2216}[/tex] Hence, Total surface area of cuboid is 2216 cm². Reply
Answer:
Step-by-step explanation:
Given that:
To Find:
Solution:
As we know that,
Substituting the values,
[tex]\rm{\longmapsto6720=28\times x\times15}[/tex]
[tex]\rm{\longmapsto6720=420x}[/tex]
[tex]\rm{\longmapsto\dfrac{6720}{420}=x}[/tex]
[tex]\rm{\longmapsto16=x}[/tex]
[tex]\rm{\longmapsto x = 16}[/tex]
Hence,
Therefore,
Now,
As we know that,
Substituting the values,
[tex]\sf{\longmapsto2\{(28\times16)+(16\times15)+(28\times15)\}}[/tex]
[tex]\sf{\longmapsto2\{448+240+420\}}[/tex]
[tex]\sf{\longmapsto2\times1108}[/tex]
[tex]\sf{\longmapsto2216}[/tex]
Hence,