A circular pool has a radius of 3 m and a height of 1.5m. The pool is filled with water up to 4/5 of its total capacity. Calculate the number of liters of water in the pool. About the author Amelia
[tex]\huge{\underline{\color{maroon}{\textsf{\textbf{~~~1{\color{crimson}69}56 litres}}}}} [/tex] _____________________________ Mark upper one Brainliest 😉 Reply
[tex]\huge \sf \color{lightblue} {\bigstar \: Answer \: \bigstar}[/tex] [tex] \sf \: Volume = πr²h[/tex] [tex] \sf \: Therefore, \\ \sf \: volume \: of \: the \: pool \: is [/tex] [tex] \sf = \pi \times 1.5m \times 1.5m \times 3m[/tex] [tex] \sf \: = 3.14 \times 6.75 \: (here \: \pi = 3.14)[/tex] [tex] \sf = 21.195m ^{3} [/tex] ━━━━━━━━━━━━━━━━━━━━━━━━━ [tex] \sf \: Given \: that \: 4/5th \: of \: the \: pool \: \\ \sf is \: filled \: with \: water[/tex] [tex] \sf \: Therefore [/tex] [tex] \frac{4}{5} \times 21.195 {m}^{3} \\ = 16.956 {m}^{3} [/tex] ━━━━━━━━━━━━━━━━━━━━━━━━━ [tex] \sf \: Number \: of \: liters \: of \: water [/tex] [tex] \sf = 1000 \times 16.956 \\ \sf = 16956 \: litres[/tex] ━━━━━━━━━━━━━━━━━━━━━━━━━ Reply
[tex]\huge{\underline{\color{maroon}{\textsf{\textbf{~~~1{\color{crimson}69}56 litres}}}}} [/tex]
_____________________________
Mark upper one Brainliest 😉
[tex]\huge \sf \color{lightblue} {\bigstar \: Answer \: \bigstar}[/tex]
[tex] \sf \: Volume = πr²h[/tex]
[tex] \sf \: Therefore, \\ \sf \: volume \: of \: the \: pool \: is [/tex]
[tex] \sf = \pi \times 1.5m \times 1.5m \times 3m[/tex]
[tex] \sf \: = 3.14 \times 6.75 \: (here \: \pi = 3.14)[/tex]
[tex] \sf = 21.195m ^{3} [/tex]
━━━━━━━━━━━━━━━━━━━━━━━━━
[tex] \sf \: Given \: that \: 4/5th \: of \: the \: pool \: \\ \sf is \: filled \: with \: water[/tex]
[tex] \sf \: Therefore [/tex]
[tex] \frac{4}{5} \times 21.195 {m}^{3} \\ = 16.956 {m}^{3} [/tex]
━━━━━━━━━━━━━━━━━━━━━━━━━
[tex] \sf \: Number \: of \: liters \: of \: water [/tex]
[tex] \sf = 1000 \times 16.956 \\ \sf = 16956 \: litres[/tex]
━━━━━━━━━━━━━━━━━━━━━━━━━