A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use π = 3.14 and √3 = 1.73) About the author Savannah
Step-by-step explanation: ✿Question:– A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use π = 3.14 and √3 = 1.73) ✿Answer:– [tex]Solution: \\ Radius, \: r \: = \: 12 \: cm \\ Now, \\ draw \: a \: perpendicular \: OD \: on \: chord \\ AB \: and \: it \: will \: bisect \: chord \: AB. \\ So, AD = DB [/tex] [tex] \\ Now, \\ the \: area \: of \: the \: minor \: sector \: = \: (θ/360°) \: × \: πr {}^{2} \\ = \: (120/360) \: × \: (22/7) \: × \: 12 {}^{2} \\ = 150.72 cm2 [/tex] [tex] \\ Consider \: the \: ΔAOB, \\ ∠ OAB \: = \: 180°- \: (90°+60°) \: = \: 30° \\ Now, \\ cos 30° \: = \: AD/OA \\ √3/2 \: = \: AD/12 \\ Or, \\ AD \: = \: 6√3 cm [/tex] [tex] \\ We \: know \: OD \: bisects \: AB. \\ So, \\ AB \: = 2×AD \: = \: 12√3 \: cm \\ Now, \: \\ sin 30° \: = \: OD/OA [/tex] [tex] \\ Or, \: ½ \: = \: OD/12 \\ ∴ OD \: = \: 6 cm \\ So, \\ the \: area \: of \: ΔAOB \: = \: ½ × base × height [/tex] [tex] \\ Here, \\ base \: = AB \: = \: 12√3 \: and \\ Height \: = \: OD \: = \: 6 \\ So, \\ area \: of \: ΔAOB \: = \: ½×12√3×6 \: = \: 36√3 \: cm \: = \: 62.28 cm2 [/tex] [tex] \\ ∴ \: Area \: of \: the \: corresponding \: Minor \: segment \\ = Area \: of \: the \: Minor \: sector \: – \: Area \: of \: ΔAOB \\ = 150.72 cm2 \: – \: 62.28 cm2 \: = \: 88.44 cm2 [/tex] [tex]Hence, \: the \: answer \: is \: 88.44 \: cm {}^{2} [/tex] Reply
Step-by-step explanation:
✿Question:–
A chord of a circle of radius 12 cm
subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use π = 3.14 and √3 = 1.73)
✿Answer:–
[tex]Solution:
\\ Radius, \: r \: = \: 12 \: cm
\\ Now, \\ draw \: a \: perpendicular \: OD \: on \: chord \\ AB \: and \: it \: will \: bisect \: chord \: AB.
\\ So, AD = DB
[/tex]
[tex] \\ Now, \\ the \: area \: of \: the \: minor \: sector \: = \: (θ/360°) \: × \: πr {}^{2}
\\ = \: (120/360) \: × \: (22/7) \: × \: 12 {}^{2}
\\ = 150.72 cm2
[/tex]
[tex] \\ Consider \: the \: ΔAOB,
\\ ∠ OAB \: = \: 180°- \: (90°+60°) \: = \: 30°
\\ Now, \\ cos 30° \: = \: AD/OA
\\ √3/2 \: = \: AD/12
\\ Or, \\ AD \: = \: 6√3 cm
[/tex]
[tex] \\ We \: know \: OD \: bisects \: AB. \\ So,
\\ AB \: = 2×AD \: = \: 12√3 \: cm
\\ Now, \: \\ sin 30° \: = \: OD/OA
[/tex]
[tex] \\ Or, \: ½ \: = \: OD/12
\\ ∴ OD \: = \: 6 cm
\\ So, \\ the \: area \: of \: ΔAOB \: = \: ½ × base × height
[/tex]
[tex] \\ Here, \\ base \: = AB \: = \: 12√3 \: and
\\ Height \: = \: OD \: = \: 6
\\ So, \\ area \: of \: ΔAOB \: = \: ½×12√3×6 \: = \: 36√3 \: cm \: = \: 62.28 cm2
[/tex]
[tex] \\ ∴ \: Area \: of \: the \: corresponding \: Minor \: segment \\ = Area \: of \: the \: Minor \: sector \: – \: Area \: of \: ΔAOB
\\ = 150.72 cm2 \: – \: 62.28 cm2 \: = \: 88.44 cm2
[/tex]
[tex]Hence, \: the \: answer \: is \: 88.44 \: cm {}^{2} [/tex]