A(-6,p), B(10,6) and C(30,q) and 3 collinear points. also 4q+5p=k. find the value of k. About the author Amara
Given :- Following three points are collinear, A (- 6, p) B(10, 6) C(30, q). and 4q + 5p = k To Find :- The value of k Solution :- Given that Following three points are collinear, A (- 6, p) B(10, 6) C(30, q). We know, Condition for 3 points to be collinear is given by [tex]\rm :\longmapsto\:x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) = 0[/tex] Here, [tex] \rm :\longmapsto\:x_1 = – 6[/tex] [tex] \rm :\longmapsto\:y_1 = p[/tex] [tex] \rm :\longmapsto\:x_2 = 10[/tex] [tex] \rm :\longmapsto\:y_2 = 6[/tex] [tex] \rm :\longmapsto\:x_3 = 30[/tex] [tex] \rm :\longmapsto\:y_3 = q[/tex] Thus, On substituting the values, we get [tex]\rm :\longmapsto\: – 6(6 – q) + 10(q – p) + 30(p – 6) = 0[/tex] [tex]\rm :\longmapsto\: – 36 + 6q+ 10q -10 p+ 30p – 180= 0[/tex] [tex]\rm :\longmapsto\:20p + 16q – 216 = 0[/tex] [tex]\rm :\longmapsto\:4(5p + 4q – 54) = 0[/tex] [tex]\rm :\longmapsto\:5p + 4q – 54= 0[/tex] [tex]\rm :\longmapsto\:k – 54= 0 \: \: \: \: \: \: \: \: \: \: \{ \because \: 5p + 4q = k \}[/tex] [tex]\bf\implies \:k = 54[/tex] Additional Information :- Section Formula :- [tex]\rm :\longmapsto\: \:( x, y) = \bigg(\dfrac{mx_2 + nx_1}{m + n} , \dfrac{my_2 + ny_1}{m + n} \bigg)[/tex] Midpoint Formula :- [tex]\rm :\longmapsto\: \: ( x, y) = \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg)[/tex] Area of triangle :- [tex]\rm :\longmapsto\:\ Area =\dfrac{1}{2} [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)][/tex] Distance Formula :- [tex]\rm :\longmapsto\: \:AB = \sqrt{ {(x_2-x_1)}^{2} + {(y_2-y_1)}^{2} }[/tex] Reply
Given :-
Following three points are collinear,
and
To Find :-
Solution :-
Given that
Following three points are collinear,
We know,
Condition for 3 points to be collinear is given by
[tex]\rm :\longmapsto\:x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) = 0[/tex]
Here,
[tex] \rm :\longmapsto\:x_1 = – 6[/tex]
[tex] \rm :\longmapsto\:y_1 = p[/tex]
[tex] \rm :\longmapsto\:x_2 = 10[/tex]
[tex] \rm :\longmapsto\:y_2 = 6[/tex]
[tex] \rm :\longmapsto\:x_3 = 30[/tex]
[tex] \rm :\longmapsto\:y_3 = q[/tex]
Thus,
On substituting the values, we get
[tex]\rm :\longmapsto\: – 6(6 – q) + 10(q – p) + 30(p – 6) = 0[/tex]
[tex]\rm :\longmapsto\: – 36 + 6q+ 10q -10 p+ 30p – 180= 0[/tex]
[tex]\rm :\longmapsto\:20p + 16q – 216 = 0[/tex]
[tex]\rm :\longmapsto\:4(5p + 4q – 54) = 0[/tex]
[tex]\rm :\longmapsto\:5p + 4q – 54= 0[/tex]
[tex]\rm :\longmapsto\:k – 54= 0 \: \: \: \: \: \: \: \: \: \: \{ \because \: 5p + 4q = k \}[/tex]
[tex]\bf\implies \:k = 54[/tex]
Additional Information :-
Section Formula :-
[tex]\rm :\longmapsto\: \:( x, y) = \bigg(\dfrac{mx_2 + nx_1}{m + n} , \dfrac{my_2 + ny_1}{m + n} \bigg)[/tex]
Midpoint Formula :-
[tex]\rm :\longmapsto\: \: ( x, y) = \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg)[/tex]
Area of triangle :-
[tex]\rm :\longmapsto\:\ Area =\dfrac{1}{2} [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)][/tex]
Distance Formula :-
[tex]\rm :\longmapsto\: \:AB = \sqrt{ {(x_2-x_1)}^{2} + {(y_2-y_1)}^{2} }[/tex]