A man moves along the x-axis such that its velocity is v =1/x. If he is initially at x = 2 m, find the time when
he reaches x

A man moves along the x-axis such that its velocity is v =1/x. If he is initially at x = 2 m, find the time when
he reaches x = 4 m
(A) 6 sec
(B) 4 sec
(C)3 sec
(D) he can’t reach x = 4 m​

About the author
Genesis

2 thoughts on “A man moves along the x-axis such that its velocity is v =1/x. If he is initially at x = 2 m, find the time when<br />he reaches x”

  1. Answer:

    [tex] \bf \huge \red{(A) \: 6sec}[/tex]

    Explanation:

    [tex] \bf \: We \: know \: that,[/tex]

    [tex] \bf \: v=d \times dt[/tex]

    [tex] \bf \: so,[/tex]

    [tex] \bf1x=d \times dt[/tex]

    [tex] \bf \: Then,[/tex]

    [tex] \bf∫dt=∫xdx[/tex]

    [tex]\bf\displaystyle \ t=\left. \dfrac{ {x}^{2} }{2} \right| _{2}^{4} \\ [/tex]

    [tex] \bf \color{red}=>x=6sec[/tex]

    Reply
  2. [tex]\maltese\:\underline{\underline{\sf AnsWer :}}\:\maltese[/tex]

    Given;

    [tex]\longrightarrow\:\:\tt v = \dfrac{1}{x} \\ [/tex]

    Also we know that velocity is written as;

    [tex]\longrightarrow\:\:\tt v = \dfrac{dx}{dt} \\[/tex]

    Now,

    [tex]\longrightarrow\:\:\tt \dfrac{dx}{dt} = \dfrac{1}{x} \\[/tex]

    By cross multiplying we get :

    [tex]\longrightarrow\:\:\tt dt = x.dx \\[/tex]

    Now, integrate both the sides :

    [tex]\longrightarrow\:\:\displaystyle \tt\int\limits_{0}^{t}dt=\int\limits_{2}^{4}
    x.dx \\ [/tex]

    [tex]\longrightarrow\:\:\displaystyle \tt t=\left. \dfrac{ {x}^{2} }{2} \right| _{2}^{4} \\ [/tex]

    [tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ {(4)}^{2} }{2} – \frac{ {(2)}^{2} }{2} \\ [/tex]

    [tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 16 }{2} – \frac{ 4 }{2} \\ [/tex]

    [tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 16 – 4 }{2} \\ [/tex]

    [tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 12 }{2} \\ [/tex]

    [tex]\longrightarrow\:\: \underline{ \underline{\displaystyle \tt t= 6 \: s }}\\ [/tex]

    Hence, the option (A) t = 6 seconds is a correct answer.

    Reply

Leave a Comment