A man moves along the x-axis such that its velocity is v =1/x. If he is initially at x = 2 m, find the time whenhe reaches x = 4 m(A) 6 sec(B) 4 sec(C)3 sec(D) he can’t reach x = 4 m About the author Genesis
Answer: [tex] \bf \huge \red{(A) \: 6sec}[/tex] Explanation: [tex] \bf \: We \: know \: that,[/tex] [tex] \bf \: v=d \times dt[/tex] [tex] \bf \: so,[/tex] [tex] \bf1x=d \times dt[/tex] [tex] \bf \: Then,[/tex] [tex] \bf∫dt=∫xdx[/tex] [tex]\bf\displaystyle \ t=\left. \dfrac{ {x}^{2} }{2} \right| _{2}^{4} \\ [/tex] [tex] \bf \color{red}=>x=6sec[/tex] Reply
[tex]\maltese\:\underline{\underline{\sf AnsWer :}}\:\maltese[/tex] Given; [tex]\longrightarrow\:\:\tt v = \dfrac{1}{x} \\ [/tex] Also we know that velocity is written as; [tex]\longrightarrow\:\:\tt v = \dfrac{dx}{dt} \\[/tex] Now, [tex]\longrightarrow\:\:\tt \dfrac{dx}{dt} = \dfrac{1}{x} \\[/tex] By cross multiplying we get : [tex]\longrightarrow\:\:\tt dt = x.dx \\[/tex] Now, integrate both the sides : [tex]\longrightarrow\:\:\displaystyle \tt\int\limits_{0}^{t}dt=\int\limits_{2}^{4} x.dx \\ [/tex] [tex]\longrightarrow\:\:\displaystyle \tt t=\left. \dfrac{ {x}^{2} }{2} \right| _{2}^{4} \\ [/tex] [tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ {(4)}^{2} }{2} – \frac{ {(2)}^{2} }{2} \\ [/tex] [tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 16 }{2} – \frac{ 4 }{2} \\ [/tex] [tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 16 – 4 }{2} \\ [/tex] [tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 12 }{2} \\ [/tex] [tex]\longrightarrow\:\: \underline{ \underline{\displaystyle \tt t= 6 \: s }}\\ [/tex] Hence, the option (A) t = 6 seconds is a correct answer. Reply
Answer:
[tex] \bf \huge \red{(A) \: 6sec}[/tex]
Explanation:
[tex] \bf \: We \: know \: that,[/tex]
[tex] \bf \: v=d \times dt[/tex]
[tex] \bf \: so,[/tex]
[tex] \bf1x=d \times dt[/tex]
[tex] \bf \: Then,[/tex]
[tex] \bf∫dt=∫xdx[/tex]
[tex]\bf\displaystyle \ t=\left. \dfrac{ {x}^{2} }{2} \right| _{2}^{4} \\ [/tex]
[tex] \bf \color{red}=>x=6sec[/tex]
[tex]\maltese\:\underline{\underline{\sf AnsWer :}}\:\maltese[/tex]
Given;
[tex]\longrightarrow\:\:\tt v = \dfrac{1}{x} \\ [/tex]
Also we know that velocity is written as;
[tex]\longrightarrow\:\:\tt v = \dfrac{dx}{dt} \\[/tex]
Now,
[tex]\longrightarrow\:\:\tt \dfrac{dx}{dt} = \dfrac{1}{x} \\[/tex]
By cross multiplying we get :
[tex]\longrightarrow\:\:\tt dt = x.dx \\[/tex]
Now, integrate both the sides :
[tex]\longrightarrow\:\:\displaystyle \tt\int\limits_{0}^{t}dt=\int\limits_{2}^{4}
x.dx \\ [/tex]
[tex]\longrightarrow\:\:\displaystyle \tt t=\left. \dfrac{ {x}^{2} }{2} \right| _{2}^{4} \\ [/tex]
[tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ {(4)}^{2} }{2} – \frac{ {(2)}^{2} }{2} \\ [/tex]
[tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 16 }{2} – \frac{ 4 }{2} \\ [/tex]
[tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 16 – 4 }{2} \\ [/tex]
[tex]\longrightarrow\:\:\displaystyle \tt t= \dfrac{ 12 }{2} \\ [/tex]
[tex]\longrightarrow\:\: \underline{ \underline{\displaystyle \tt t= 6 \: s }}\\ [/tex]
Hence, the option (A) t = 6 seconds is a correct answer.