The central angle is 60° and arc length is 10π cm.what is the perimeter of the circle? About the author Madeline
Given:- The central angle is 60° and arc length is 10π cm. To Find:- Perimeter of the circle Formula Used:– [tex]{\boxed{\bf{Length\:of\:Arc=\dfrac{\theta}{360°}\times2\pi r}}}[/tex] [tex]{\boxed{\bf{Circumference\: of \:Circle=2\pi r}}}[/tex] Solution:– Firstly, [tex]\bf :\implies\:Length\:of\:Arc=\dfrac{\theta}{360°}\times2\pi r[/tex] [tex]\sf :\implies\:10\pi=\dfrac{60°}{360°}\times2\pi r[/tex] [tex]\sf :\implies\:10=\dfrac{1}{6}\times2\times r[/tex] [tex]\sf :\implies\:2r=60[/tex] [tex]\sf :\implies\:r=\dfrac{60}{2}[/tex] [tex]\bf :\implies\:r=30\:cm[/tex] Now, [tex]\bf :\implies\: Circumference=2\pi r[/tex] [tex]\sf :\implies\: Circumference=2\times \dfrac{22}{7}\times 30[/tex] [tex]\bf :\implies\: Circumference=\dfrac{132}{7}\:cm[/tex] or, [tex]\bf :\implies\: Circumference=18.85\:cm[/tex] Hence, The Circumference of the given Circle is 132/7cm or 18.85cm. ━━━━━━━━━━━━━━━━━━ Reply
Given:-
To Find:-
Formula Used:–
Solution:–
Firstly,
[tex]\bf :\implies\:Length\:of\:Arc=\dfrac{\theta}{360°}\times2\pi r[/tex]
[tex]\sf :\implies\:10\pi=\dfrac{60°}{360°}\times2\pi r[/tex]
[tex]\sf :\implies\:10=\dfrac{1}{6}\times2\times r[/tex]
[tex]\sf :\implies\:2r=60[/tex]
[tex]\sf :\implies\:r=\dfrac{60}{2}[/tex]
[tex]\bf :\implies\:r=30\:cm[/tex]
Now,
[tex]\bf :\implies\: Circumference=2\pi r[/tex]
[tex]\sf :\implies\: Circumference=2\times \dfrac{22}{7}\times 30[/tex]
[tex]\bf :\implies\: Circumference=\dfrac{132}{7}\:cm[/tex]
or,
[tex]\bf :\implies\: Circumference=18.85\:cm[/tex]
Hence, The Circumference of the given Circle is 132/7cm or 18.85cm.
━━━━━━━━━━━━━━━━━━