Step-by-step explanation: Given :– x = 3√5+2√2 y = 3√5-2√2 To find :– Find the value of (x^2-y^2)^2 ? Solution:– Given that :- x = 3√5+2√2 ——-(1) y = 3√5-2√2 ——–(2) Method-1:– x = 3√5+2√2 ——-(1) On squaring both sides then => x^2 = (3√5+2√2)^2 => x^2 = (3√5)^2+2(3√5)(2√2)+(2√2)^2 Since (a+b)^2 = a^2+2ab+b^2 =>x^2 = 45+12√10+8 =>x^2 = 53+12√10———–(3) y = 3√5-2√2 ——–(2) On squaring both sides then => y^2 = (3√5-2√2)^2 => y^2 = (3√5)^2-2(3√5)(2√2)+(2√2)^2 Since (a-b)^2 = a^2-2ab+b^2 =>y^2 = 45-12√10+8 =>y^2 = 53-12√10———–(4) Now, (3)-(4)=> x^2-y^2 =>( 53+12√10)-(53-12√10) => 53+12√10-53+12√10 => (53-53)+(12√10+12√10) => 0+24√10 =>x^2-y^2 = 24√10——–(5) Now, (x^2-y^2)^2 From (5) => (24√10)^2 => 24^2×(√10)^2 => 576×10 => 5760 Method –2:– Given that :- x = 3√5+2√2 ——-(1) y = 3√5-2√2 ——–(2) On adding (1)&(2) x+y = 3√5+2√2+3√5-2√2 => x+y = 3√5+3√5 => x+y = (3+3)√5 x+y = 6√5———–(3) on Subtracting (2) from (1) x-y = (3√5+2√2)-(3√5-2√2) =>x-y = 3√5+2√2-3√5+2√2 => x-y = 2√2+2√2 =>x-y = (2+2)√2 =>x-y = 4√2——–(4) On multiplying (3)&(4) =>(x+y)(x-y) => (6√5)(4√2) => (x+y)(x-y) = (6×4×√5×√2) => x^2-y^2 = 24√10——(5) Since (a+b)(a-b)=a^2-b^2 Now , (x^2-y^2)^2 => [24√10]^2 => 24^2×(√10)^2 => 576×10 => 5760 Answer:– The value of (x^2-y^2)^2 for the given problem is 5760 Used formulae:– (a+b)^2 = a^2+2ab+b^2 (a-b)^2 = a^2-2ab+b^2 (a+b)(a-b)=a^2-b^2 (ab)^m = a^m × a^n Reply
Step-by-step explanation:
Given :–
x = 3√5+2√2
y = 3√5-2√2
To find :–
Find the value of (x^2-y^2)^2 ?
Solution:–
Given that :-
x = 3√5+2√2 ——-(1)
y = 3√5-2√2 ——–(2)
Method-1:–
x = 3√5+2√2 ——-(1)
On squaring both sides then
=> x^2 = (3√5+2√2)^2
=> x^2 = (3√5)^2+2(3√5)(2√2)+(2√2)^2
Since (a+b)^2 = a^2+2ab+b^2
=>x^2 = 45+12√10+8
=>x^2 = 53+12√10———–(3)
y = 3√5-2√2 ——–(2)
On squaring both sides then
=> y^2 = (3√5-2√2)^2
=> y^2 = (3√5)^2-2(3√5)(2√2)+(2√2)^2
Since (a-b)^2 = a^2-2ab+b^2
=>y^2 = 45-12√10+8
=>y^2 = 53-12√10———–(4)
Now,
(3)-(4)=>
x^2-y^2
=>( 53+12√10)-(53-12√10)
=> 53+12√10-53+12√10
=> (53-53)+(12√10+12√10)
=> 0+24√10
=>x^2-y^2 = 24√10——–(5)
Now,
(x^2-y^2)^2
From (5)
=> (24√10)^2
=> 24^2×(√10)^2
=> 576×10
=> 5760
Method –2:–
Given that :-
x = 3√5+2√2 ——-(1)
y = 3√5-2√2 ——–(2)
On adding (1)&(2)
x+y = 3√5+2√2+3√5-2√2
=> x+y = 3√5+3√5
=> x+y = (3+3)√5
x+y = 6√5———–(3)
on Subtracting (2) from (1)
x-y = (3√5+2√2)-(3√5-2√2)
=>x-y = 3√5+2√2-3√5+2√2
=> x-y = 2√2+2√2
=>x-y = (2+2)√2
=>x-y = 4√2——–(4)
On multiplying (3)&(4)
=>(x+y)(x-y)
=> (6√5)(4√2)
=> (x+y)(x-y) = (6×4×√5×√2)
=> x^2-y^2 = 24√10——(5)
Since (a+b)(a-b)=a^2-b^2
Now ,
(x^2-y^2)^2
=> [24√10]^2
=> 24^2×(√10)^2
=> 576×10
=> 5760
Answer:–
The value of (x^2-y^2)^2 for the given problem is 5760
Used formulae:–