[tex]\huge\mathcal{\fcolorbox{cyan}{black}{\pink{Answer࿐}}}[/tex] Correct Question If tan (A + B) = √3 and tan (A – B) = 1/√3 ; 0° < A + B ≤ 90°; A > B, find A and B? Solution ★A = 45°, B = 15° Explanation ★Given that tan (A + B) = √3 ★But we know that tan 60° = √3 Thus, tan (A + B) = tan 60° ⇒A+B= 60°———-(1) ★& [tex]tan (A-B) = \: \frac{1}{ \sqrt{3} } [/tex] ★But we know that tan 30° = 1/√3 Thus tan ( AB) = tan 30° A- B = 30° ———-(2) ★Our equations are A + B = 60°———(1) A-B = 30°————–(2) ★Adding (1) and (2) A+B+A-B= 60° +30° 2A = 90° A = 90° / 2 A = 45° Putting A = 45° in (1) ★ A+B= 60° 45° + B = 60° B = 60° – 45° B = 15° ★Hence A = 45°, B = 15° [tex]{\huge{\blue{\texttt{\orange T\red h\green a\pink n\blue k\purple s\red}}}}[/tex] Reply
Answer: Welcome to Gboard clipboard, any text you copy will be saved here.Welcome to Gboard clipboard, any text you copy will be saved here.Welcome to Gboard clipboard, any text you copy will be saved here. Reply
[tex]\huge\mathcal{\fcolorbox{cyan}{black}{\pink{Answer࿐}}}[/tex]
Correct Question
Solution
Explanation
★Given that
★But we know that tan 60° = √3
Thus,
★&
[tex]tan (A-B) = \: \frac{1}{ \sqrt{3} } [/tex]
★But we know that
Thus
★Our equations are
★Adding (1) and (2)
Putting A = 45° in (1)
★
★Hence A = 45°, B = 15°
[tex]{\huge{\blue{\texttt{\orange T\red h\green a\pink n\blue k\purple s\red}}}}[/tex]
Answer:
Welcome to Gboard clipboard, any text you copy will be saved here.Welcome to Gboard clipboard, any text you copy will be saved here.Welcome to Gboard clipboard, any text you copy will be saved here.