if cos ø + cos ²ø = 1 ,then sin ¹² ø +3 sin ¹⁰ø+3 sin ⁸ø + sin ⁶ø=​

if cos ø + cos ²ø = 1 ,then sin ¹² ø +3 sin ¹⁰ø+3 sin ⁸ø + sin ⁶ø=​

About the author
Gianna

1 thought on “if cos ø + cos ²ø = 1 ,then sin ¹² ø +3 sin ¹⁰ø+3 sin ⁸ø + sin ⁶ø=​”

  1. [tex]\large\underline{\sf{Solution-}}[/tex]

    Given that

    [tex]\rm :\longmapsto\:cos\phi + {cos}^{2} \phi = 1[/tex]

    can be rewritten as

    [tex]\rm :\longmapsto\:cos\phi = 1 – {cos}^{2} \phi [/tex]

    [tex]\rm :\longmapsto\:cos\phi = {sin}^{2} \phi [/tex]

    [tex]\red{\bigg \{ \because \: {sin}^{2}x + {cos}^{2}x = 1 \bigg \}}[/tex]

    Consider,

    [tex]\rm :\longmapsto\: {sin}^{12}\phi + 3 {sin}^{10}\phi + 3 {sin}^{8}\phi + {sin}^{6}\phi [/tex]

    [tex]\rm \: = \: \: {\bigg( {sin}^{4}\phi \bigg) }^{3} + 3 {sin}^{6}\phi \bigg( {sin}^{4}\phi + {sin}^{2}\phi\bigg) + {\bigg( {sin}^{2}\phi \bigg) }^{3}[/tex]

    We know,

    [tex] \boxed{ \sf \: {(x + y)}^{3} = {x}^{3} + 3xy(x + y) + {y}^{3}}[/tex]

    So, using this identity, we get

    [tex]\rm \: = \: \:{\bigg( {sin}^{4}\phi + {sin}^{2}\phi \bigg) }^{3}[/tex]

    [tex]\rm \: = \: \:{\bigg( ({sin}^{2}\phi)^{2} + {sin}^{2}\phi \bigg) }^{3}[/tex]

    [tex]\rm \: = \: \:{\bigg( {cos}^{2}\phi + cos\phi \bigg) }^{3}[/tex]

    [tex] \blue{\bf:\longmapsto\: \: \: \: \: \: \: \: \because \: cos\phi = {sin}^{2} \phi }[/tex]

    [tex]\rm \: = \: \: {(1)}^{3} [/tex]

    [tex] \blue{\bf:\longmapsto\: \: \: \: \: \: \: \: \because \: cos\phi + {cos}^{2} \phi = 1}[/tex]

    Hence,

    [tex] \purple{ \boxed{\bf :\longmapsto\: {sin}^{12}\phi + 3 {sin}^{10}\phi + 3 {sin}^{8}\phi + {sin}^{6}\phi = 1}}[/tex]

    Additional Information :-

    Relationship between sides and T ratios

    sin θ = Opposite Side/Hypotenuse

    cos θ = Adjacent Side/Hypotenuse

    tan θ = Opposite Side/Adjacent Side

    sec θ = Hypotenuse/Adjacent Side

    cosec θ = Hypotenuse/Opposite Side

    cot θ = Adjacent Side/Opposite Side

    Reciprocal Identities

    cosec θ = 1/sin θ

    sec θ = 1/cos θ

    cot θ = 1/tan θ

    sin θ = 1/cosec θ

    cos θ = 1/sec θ

    tan θ = 1/cot θ

    Co-function Identities

    sin (90°−x) = cos x

    cos (90°−x) = sin x

    tan (90°−x) = cot x

    cot (90°−x) = tan x

    sec (90°−x) = cosec x

    cosec (90°−x) = sec x

    Fundamental Trigonometric Identities

    sin²θ + cos²θ = 1

    sec²θ – tan²θ = 1

    cosec²θ – cot²θ = 1

    Reply

Leave a Comment