sum of digital of a two digit number is 11. If the digitals are interchange the number so got is 27 more than it. Find the numbers? About the author Cora
Answer: Question :- Sum of digital of a two digit number is 11. If the digitals are interchange the number so got is 27 more than it. Find the numbers? Given :- Sum of digital of a two digit number is 11. If the digitals are interchange the number so got is 27 more than it. Find Out :- Find the numbers? Solution :- Let : Tens digit be x. Ones digit be y. Original number = 10x + y When digits are interchanged: [tex]\curlyeqsucc[/tex] New number = 10y + x Sum of two digit : [tex]\leadsto[/tex] x + y = 11 [tex]\leadsto[/tex] x = 11 – y ———(Eqn no 1) When the digits are interchanged : [tex]\leadsto[/tex] 10x + y + 27 = 10y + x Substituting the value of x from eqn (i) we get that , [tex]\leadsto[/tex] 10(11 – y) + y + 27 = 10y + 11 – y [tex]\leadsto[/tex] 110 – 10y + y + 27 = 9y + 11 [tex]\leadsto[/tex] 137 – 9y = 9y + 11 [tex]\leadsto[/tex] 9y + 9y = 137 – 11 [tex]\leadsto[/tex] 18y = 126 [tex]\leadsto[/tex] y = 126/18 [tex]\leadsto[/tex] y = 7 From the equation 1 we get, [tex]\leadsto[/tex] x = 11 – y Substituting the value of y = 7 in the equation no 1 we get, [tex]\leadsto[/tex] x = 11 – 7 [tex]\leadsto[/tex] x = 4 Let’s finding the original number: [tex]\implies[/tex] Original number = 10x + y [tex]\implies[/tex] Original number = 10(4) + 7 [tex]\implies[/tex] Original number = 40 + 7 [tex]\implies[/tex] Original number = 47 Therefore, the numbers is 47. Reply
Answer: The number is 47 Step-by-step explanation: Let, Units digit = x Tens digit = 11 – x Original number : ⇒ 10 (11 – x) + x ⇒ 110 – 10x + x ⇒ 110 – 9x If the digits are interchanged the number so got is 27 more than it ⇒ 10x + 11 – x ⇒ 10x – x + 11 ⇒ 9x + 11 ★ According to the Question : ⇒ (110 – 9x) + 27 = 9x + 11 ⇒ 110 – 9x + 27 = 9x + 11 ⇒ 110 + 27 – 9x = 9x + 11 ⇒ 137 – 9x = 9x + 11 ⇒ 137 – 11 = 9x + 9x ⇒ 126 = 18x ⇒ x = 126 / 18 ⇒ x = 7 Units digit = 7 Tens digit = 11 – x ⇒ 11 – 7 = 4 Tens digit = 4 Therefore, the number is 47 Reply
Answer:
Question :-
Given :-
Find Out :-
Solution :-
Let :
When digits are interchanged:
[tex]\curlyeqsucc[/tex] New number = 10y + x
Sum of two digit :
[tex]\leadsto[/tex] x + y = 11
[tex]\leadsto[/tex] x = 11 – y ———(Eqn no 1)
When the digits are interchanged :
[tex]\leadsto[/tex] 10x + y + 27 = 10y + x
Substituting the value of x from eqn (i) we get that ,
[tex]\leadsto[/tex] 10(11 – y) + y + 27 = 10y + 11 – y
[tex]\leadsto[/tex] 110 – 10y + y + 27 = 9y + 11
[tex]\leadsto[/tex] 137 – 9y = 9y + 11
[tex]\leadsto[/tex] 9y + 9y = 137 – 11
[tex]\leadsto[/tex] 18y = 126
[tex]\leadsto[/tex] y = 126/18
[tex]\leadsto[/tex] y = 7
From the equation 1 we get,
[tex]\leadsto[/tex] x = 11 – y
Substituting the value of y = 7 in the equation no 1 we get,
[tex]\leadsto[/tex] x = 11 – 7
[tex]\leadsto[/tex] x = 4
Let’s finding the original number:
[tex]\implies[/tex] Original number = 10x + y
[tex]\implies[/tex] Original number = 10(4) + 7
[tex]\implies[/tex] Original number = 40 + 7
[tex]\implies[/tex] Original number = 47
Therefore, the numbers is 47.
Answer:
The number is 47
Step-by-step explanation:
Let,
Units digit = x
Tens digit = 11 – x
Original number :
⇒ 10 (11 – x) + x
⇒ 110 – 10x + x
⇒ 110 – 9x
If the digits are interchanged the number so got is 27 more than it
⇒ 10x + 11 – x
⇒ 10x – x + 11
⇒ 9x + 11
★ According to the Question :
⇒ (110 – 9x) + 27 = 9x + 11
⇒ 110 – 9x + 27 = 9x + 11
⇒ 110 + 27 – 9x = 9x + 11
⇒ 137 – 9x = 9x + 11
⇒ 137 – 11 = 9x + 9x
⇒ 126 = 18x
⇒ x = 126 / 18
⇒ x = 7
Units digit = 7
Tens digit = 11 – x
⇒ 11 – 7 = 4
Tens digit = 4
Therefore, the number is 47