Step-by-step explanation: The equation 3x² – 6x + 12 = 0 is of the form ax² + bx + c = 0, where, a = 3 b = -6 c = 12 As per formula, \sf \quad \ \ x = \dfrac{- b ± \sqrt{b^2 – 4ac}}{2a} x= 2a −b± b 2 −4ac \sf \Rightarrow x = \dfrac{-(-6) ± \sqrt{(-6)^2 – 4(3)(12) }}{2(3)}⇒x= 2(3) −(−6)± (−6) 2 −4(3)(12) \sf \Rightarrow x = \dfrac{6 ± \sqrt{36(-3)}}{6}⇒x= 6 6± 36(−3) \sf \Rightarrow x = \dfrac{6 ± 6 \sqrt{-3}}{6}⇒x= 6 6±6 −3 \sf \Rightarrow x = \dfrac{\cancel6( ± \sqrt{-3})}{\cancel6}⇒x= 6 6 (± −3 ) \sf \Rightarrow x = 1 ± \sqrt{3 \times -1}⇒x=1± 3×−1 \sf{ \Rightarrow x = 1 ± \sqrt{3}}i⇒x=1± 3 i \begin{gathered} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \rm Thank \ You!\end{gathered} Thank You! Reply
The equation 3x² – 6x + 12 = 0 is of the form ax² + bx + c = 0, where, a = 3 b = -6 c = 12 As per formula, [tex] \sf \quad \ \ x = \dfrac{- b ± \sqrt{b^2 – 4ac}}{2a}[/tex] [tex] \sf \Rightarrow x = \dfrac{-(-6) ± \sqrt{(-6)^2 – 4(3)(12) }}{2(3)}[/tex] [tex] \sf \Rightarrow x = \dfrac{6 ± \sqrt{36(-3)}}{6}[/tex] [tex] \sf \Rightarrow x = \dfrac{6 ± 6 \sqrt{-3}}{6}[/tex] [tex] \sf \Rightarrow x = \dfrac{\cancel6( ± \sqrt{-3})}{\cancel6}[/tex] [tex] \sf \Rightarrow x = 1 ± \sqrt{3 \times -1}[/tex] [tex] \sf{ \Rightarrow x = 1 ± \sqrt{3}}i[/tex] [tex] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \rm Thank \ You![/tex] Reply
Step-by-step explanation:
The equation 3x² – 6x + 12 = 0
is of the form ax² + bx + c = 0,
where,
a = 3
b = -6
c = 12
As per formula,
\sf \quad \ \ x = \dfrac{- b ± \sqrt{b^2 – 4ac}}{2a} x=
2a
−b±
b
2
−4ac
\sf \Rightarrow x = \dfrac{-(-6) ± \sqrt{(-6)^2 – 4(3)(12) }}{2(3)}⇒x=
2(3)
−(−6)±
(−6)
2
−4(3)(12)
\sf \Rightarrow x = \dfrac{6 ± \sqrt{36(-3)}}{6}⇒x=
6
6±
36(−3)
\sf \Rightarrow x = \dfrac{6 ± 6 \sqrt{-3}}{6}⇒x=
6
6±6
−3
\sf \Rightarrow x = \dfrac{\cancel6( ± \sqrt{-3})}{\cancel6}⇒x=
6
6
(±
−3
)
\sf \Rightarrow x = 1 ± \sqrt{3 \times -1}⇒x=1±
3×−1
\sf{ \Rightarrow x = 1 ± \sqrt{3}}i⇒x=1±
3
i
\begin{gathered} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \rm Thank \ You!\end{gathered}
Thank You!
The equation 3x² – 6x + 12 = 0
is of the form ax² + bx + c = 0,
where,
As per formula,
[tex] \sf \quad \ \ x = \dfrac{- b ± \sqrt{b^2 – 4ac}}{2a}[/tex]
[tex] \sf \Rightarrow x = \dfrac{-(-6) ± \sqrt{(-6)^2 – 4(3)(12) }}{2(3)}[/tex]
[tex] \sf \Rightarrow x = \dfrac{6 ± \sqrt{36(-3)}}{6}[/tex]
[tex] \sf \Rightarrow x = \dfrac{6 ± 6 \sqrt{-3}}{6}[/tex]
[tex] \sf \Rightarrow x = \dfrac{\cancel6( ± \sqrt{-3})}{\cancel6}[/tex]
[tex] \sf \Rightarrow x = 1 ± \sqrt{3 \times -1}[/tex]
[tex] \sf{ \Rightarrow x = 1 ± \sqrt{3}}i[/tex]
[tex] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \rm Thank \ You![/tex]