In triangle АВС, АВ = Ac
– D – С. ses AF I seg BC
4
Prove:
АB^2-АD^2 =
BD*CD​

By Lyla

In triangle АВС, АВ = Ac
– D – С. ses AF I seg BC
4
Prove:
АB^2-АD^2 =
BD*CD​

About the author
Lyla

1 thought on “In triangle АВС, АВ = Ac<br />– D – С. ses AF I seg BC<br />4<br />Prove:<br />АB^2-АD^2 =<br />BD*CD​”

  1. Answer:

    Draw AE⊥BC

    In △AEB and △AEC, we have

    AB=AC

    AE=AE [common]

    and, ∠b=∠c [because AB=AC]

    ∴ △AEB≅△AEC

    ⇒ BE=CE

    Since △AED and △ABE are right-angled triangles at E.

    Therefore,

    AD

    2

    =AE

    2

    +DE

    2

    and AB

    2

    =AE

    2

    +BE

    2

    ⇒ AB

    2

    −AD

    2

    =BE

    2

    −DE

    2

    ⇒ AB

    2

    −AD

    2

    =(BE+DE)(BE−DE)

    ⇒ AB

    2

    −AD

    2

    =(CE+DE)(BE−DE) [∵BE=CE]

    ⇒ AB

    2

    −AD

    2

    =CD.BD

    AB

    2

    −AD

    2

    =BD.CD [Hence proved]

    Reply

Leave a Comment