Answer: Draw AE⊥BC In △AEB and △AEC, we have AB=AC AE=AE [common] and, ∠b=∠c [because AB=AC] ∴ △AEB≅△AEC ⇒ BE=CE Since △AED and △ABE are right-angled triangles at E. Therefore, AD 2 =AE 2 +DE 2 and AB 2 =AE 2 +BE 2 ⇒ AB 2 −AD 2 =BE 2 −DE 2 ⇒ AB 2 −AD 2 =(BE+DE)(BE−DE) ⇒ AB 2 −AD 2 =(CE+DE)(BE−DE) [∵BE=CE] ⇒ AB 2 −AD 2 =CD.BD AB 2 −AD 2 =BD.CD [Hence proved] Reply
Answer:
Draw AE⊥BC
In △AEB and △AEC, we have
AB=AC
AE=AE [common]
and, ∠b=∠c [because AB=AC]
∴ △AEB≅△AEC
⇒ BE=CE
Since △AED and △ABE are right-angled triangles at E.
Therefore,
AD
2
=AE
2
+DE
2
and AB
2
=AE
2
+BE
2
⇒ AB
2
−AD
2
=BE
2
−DE
2
⇒ AB
2
−AD
2
=(BE+DE)(BE−DE)
⇒ AB
2
−AD
2
=(CE+DE)(BE−DE) [∵BE=CE]
⇒ AB
2
−AD
2
=CD.BD
AB
2
−AD
2
=BD.CD [Hence proved]