Omaru chan >•<you can call me “Naruto kun” the denominator of a rational number is gearter than its numerator by 7.if the numerator is increased by 17 and the denominator decreased by 6.the new number becomes 2.find the original number. About the author Rose
Let the fraction be [tex]\large{ \frac{p}{q}} [/tex] [tex]\large{so, \: q = p + 7}[/tex] [tex]\large{ \frac{p + 17}{q – 6 } = 2}[/tex] [tex] \implies[/tex] [tex]\large{ \frac{p + 17}{p + 7 – 6} = 2}[/tex] [tex] \implies[/tex] [tex]\large{ \frac{p + 17}{p + 1} = 2}[/tex] [tex] \implies[/tex] [tex]p + 17 = 2p + 2[/tex] [tex] \implies[/tex] [tex]\large{p = 15}[/tex] [tex] \implies[/tex] [tex]\large{q = 15 + 7 – 22}[/tex] [tex]\large{so, \: \frac{p}{q} = \frac{15}{22}} [/tex] Reply
Let the fraction be [tex]\large{ \frac{p}{q}} [/tex]
[tex]\large{so, \: q = p + 7}[/tex]
[tex]\large{ \frac{p + 17}{q – 6 } = 2}[/tex]
[tex] \implies[/tex] [tex]\large{ \frac{p + 17}{p + 7 – 6} = 2}[/tex]
[tex] \implies[/tex] [tex]\large{ \frac{p + 17}{p + 1} = 2}[/tex]
[tex] \implies[/tex] [tex]p + 17 = 2p + 2[/tex]
[tex] \implies[/tex] [tex]\large{p = 15}[/tex]
[tex] \implies[/tex] [tex]\large{q = 15 + 7 – 22}[/tex]
[tex]\large{so, \: \frac{p}{q} = \frac{15}{22}} [/tex]