Prove that the function f(x) = 3sin(2x) – cos(2x) = 4 is one one in the interval [tex][-\frac{\pi }{6} , \frac{\pi }{3} ][/tex]

Prove that the function f(x) = 3sin(2x) – cos(2x) = 4 is one one in the interval [tex][-\frac{\pi }{6} , \frac{\pi }{3} ][/tex]

About the author
Brielle

1 thought on “Prove that the function f(x) = 3sin(2x) – cos(2x) = 4 is one one in the interval [tex][-\frac{\pi }{6} , \frac{\pi }{3} ][/tex]”

  1. Answer:

    Correct option is

    C

    [

    6

    −π

    ,

    3

    π

    ]

    f:X→[2,6]

    f(x)=

    3

    sin2x−cos2x+4

    f(x)=2×

    2

    3

    sin2x−2×

    2

    1

    cos2x+4

    f(x)=2cos

    6

    π

    sin2x−2sin

    6

    π

    cos2x+4

    f(x)=2(sin2xcos

    6

    π

    −sin

    6

    π

    cos2x)+4

    f(x)=2[sin(2x−

    6

    π

    )]+4

    ∵f(x)is one-one and onto function.

    if f(x)=2

    ∴2[sin(2x−

    6

    π

    )]+4=2

    2[sin(2x−

    6

    π

    )]=−2

    sin(2x−

    6

    π

    )=−1

    (2x−

    6

    π

    )=sin

    −1

    (−1)

    2x−

    6

    π

    =

    2

    −π

    2x=

    2

    −π

    +

    3

    π

    2x=

    3

    −π

    ⇒x=

    6

    −π

    if f(x)=6

    2[sin(2x−

    6

    π

    )]+4=6

    sin(2x−

    6

    π

    )=1

    2x−

    6

    π

    =

    2

    π

    x=

    3

    π

    ∴xϵ[

    6

    −π

    ,

    3

    π

    ]

    Reply

Leave a Comment