Prove that the equation x/y + y/z + z/x = 1 has no solutions in positive integers x,y,z. About the author Liliana
Given : x/y + y/z + z/x = 1 To Find : Prove that the equation x/y + y/z + z/x = 1 has no solutions in positive integers x,y,z. Solution: x/y + y/z + z/x = 1 if x , y , z are positive integers then case 1 : x = y = z then LHS = 1 + 1 + 1 = 3≠ 1 Let say x > y , z then x/y , > 1 Hence LHS > 1 let say y > ( x , z) Then y / z > 1 ⇒ LHS> 1 let say z > ( x , y) Then z/x > 1 => LHS > 1 Hence no solution possible for integral values of x , y and z Learn More: How many ordered pairs of (m,n) integers satisfy m/12=12/m … brainly.in/question/13213839 Identify the ordered pairs that result in a quadrilaterala) (1.-1), (2,-2 … brainly.in/question/17225822 Reply
Given : x/y + y/z + z/x = 1
To Find :
Prove that the equation x/y + y/z + z/x = 1 has no solutions in positive integers x,y,z.
Solution:
x/y + y/z + z/x = 1
if x , y , z are positive integers then
case 1 : x = y = z
then LHS = 1 + 1 + 1 = 3≠ 1
Let say x > y , z then x/y , > 1
Hence LHS > 1
let say y > ( x , z)
Then y / z > 1
⇒ LHS> 1
let say z > ( x , y)
Then z/x > 1
=> LHS > 1
Hence no solution possible for integral values of x , y and z
Learn More:
How many ordered pairs of (m,n) integers satisfy m/12=12/m … brainly.in/question/13213839
Identify the ordered pairs that result in a quadrilaterala) (1.-1), (2,-2 … brainly.in/question/17225822