find the length of a rectangular garden whose area is 216 square meter and breadth 12 m​

By Remi

find the length of a rectangular garden whose area is 216 square meter and breadth 12 m​

About the author
Remi

2 thoughts on “find the length of a rectangular garden whose area is 216 square meter and breadth 12 m​”

  1. Answer:

    area of a rectangle = l× b

    216 m² = l× 12m

    216m² / 12 m = l

    16 m = l

    therefore the length of the rectangular garden is 16 m

    Reply
  2. Question:-

    • Find the length of a rectangular garden whose area is 216 square meter and breadth 12 m.

    Given:

    • Area of rectangle is 216 m²
    • Breadth of rectangle is 12m

    To find:

    • Length of rectangle

    [tex] \huge{ \sf{ \underline{ \overline{ \mid{ \color{maroon}{Solution:- } \mid}}}}}[/tex]

    • Let the length be l

    ⇝Area of rectangle = length ×breadth

    ⇝ L×12 m = 216m²

    [tex] \bf \: ⇝ \sf{l} \: = \frac{216}{12} m[/tex]

    ⇝l= 18m

    [tex] \large{ \boxed{ \mathfrak{ \green{ \underline{Therefore \: the \: measure \: of \: length \: is \: 18m}}}}}[/tex]

    ━━━━━━━━━━━━━━━━━━━━

    [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \huge{ \sf{ \underline{ \purple{Verification:- }}}}[/tex]

    • By keeping the value of length we will check our answer

    [tex]area \: = \: length \times breadth[/tex]

    [tex]⇝18 \: m \times 12 \: m[/tex]

    [tex]⇝216 {m}^{2} [/tex]

    Hence Proved✔

    ━━━━━━━━━━━━━━━━━━━━━

    Step-by-step explanation:

    [tex]⠀\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]

    [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ⠀\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}[/tex]

    Reply

Leave a Comment