8.fü) If(10x+3y):(5x+2y)=9:5, let us show that, (2x+y): (x+2y)=11:13Let us calculate what term should be added to both terms of the ratio 2:5 to make theratio 6:11 About the author Ella
Answer: Question No 1 :- [tex]\longrightarrow[/tex] If (10x + 3y) : (5x + 2y) = 9 : 5, let us show that (2x + y) : (x + 2y) = 11 : 13. Given :– [tex]\mapsto[/tex] [tex]\sf (10x + 3y) : (5x + 2y) = 9 : 5.[/tex] Show That : [tex]\mapsto[/tex] [tex]\sf (2x + y) : (x + 2y) = 11 : 13.[/tex] Solution :- [tex]\implies[/tex] [tex]\sf 10x + 3y : 5x + 2y = 9 : 5[/tex] Then, we can write as : [tex]\implies[/tex] [tex]\sf \dfrac{10x + 3y}{5x + 2y} =\: \dfrac{9}{5}[/tex] By doing cross multiplication we get, [tex]\implies[/tex] [tex]\sf 5(10x + 3y) =\: 9(5x + 2y)[/tex] [tex]\implies[/tex] [tex]\sf 50x + 15y =\: 45x + 18y[/tex] [tex]\implies[/tex] [tex]\sf 50x – 45x =\: 18y – 15y[/tex] [tex]\implies[/tex] [tex]\sf 5x =\: 3y[/tex] [tex]\implies[/tex] [tex]\sf \dfrac{x}{y} =\: \dfrac{3}{5}[/tex] Let, [tex]\longmapsto[/tex] [tex]\sf \dfrac{x}{y} =\: \dfrac{3}{5} =\: k\: [where\: k \neq 0][/tex] Then, ➲ [tex]\sf x =\: 3k[/tex] ➲ [tex]\sf y =\: 5k[/tex] Now by taking L.H.S = (2x + y) : (x + 2y) ↦ [tex]\sf (2 \times 3k + 5k) : (3k + 2 \times 5k)[/tex] ↦ [tex]\sf (6k + 5k) : (3k + 10k)[/tex] ↦ [tex]\sf 11{\cancel{k}} : 13{\cancel{k}}[/tex] ➠ [tex]\bold{\red{11 : 13}}[/tex] = R.H.S [tex]\leadsto[/tex] [tex]\sf\boxed{\bold{\pink{(PROVED)}}}[/tex] _______________________________________ Question No 2 :- [tex]\longrightarrow[/tex] Let us calculate what term should be added to both terms of the ratio 2 : 5 to make the ratio 6 : 11. Solution :- Let, the number should be added be x Now, according to the question, ⇒ [tex]\sf \dfrac{2 + x}{5 + x} =\: \dfrac{6}{11}[/tex] By doing cross multiplication we get, ⇒ [tex]\sf 11(2 + x) =\: 6(5 + x)[/tex] ⇒ [tex]\sf 22 + 11x =\: 30 + 6x[/tex] ⇒ [tex]\sf 11x – 6x =\: 30 – 22[/tex] ⇒ [tex]\sf 5x =\: 8[/tex] ➠ [tex]\sf\bold{\red{x =\: \dfrac{8}{5}}}[/tex] [tex]\therefore[/tex] [tex]\sf\bold{\dfrac{8}{5}}[/tex] is should be added to the number. Reply
Answer: 11/13 and 8/5 Step-by-step explanation: [tex]\implies \sf{\dfrac{10x+3y}{5x+2y} = \dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{10x\frac{y}{y} +3y}{5x\frac{y}{y}+2y}=\dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{y\big(10\frac{x}{y}+3\big)}{y\big(5\frac{x}{y}+2\big)}=\dfrac{9}{5} }[/tex] Let [tex]\dfrac{x}{y}=k[/tex], [tex]\implies\sf{\dfrac{10k+3}{5k+2}=\dfrac{9}{5}} \\\\\implies\sf{5(10k+3)=9(5k+2) }\\\\\implies\sf{k=\dfrac{3}{5}}[/tex] Hence, [tex]\implies \sf{\dfrac{2x+y}{x+2y} }\\\\\\\implies \sf{\dfrac{2x\frac{y}{y} +y}{x\frac{y}{y}+2y} }\\\\\\\implies \sf{\dfrac{y\big(2\frac{x}{y}+1\big)}{y\big(\frac{x}{y}+2\big)} }[/tex] [tex]\implies\sf{\dfrac{2k+1}{k+2} =\dfrac{2\big(\frac{3}{5}\big)+1}{\frac{3}{5}+2} }\\\\\implies\sf{ \dfrac{11}{13} }[/tex] Question 2: Let the x should be added, ⇒ (2 + x)/(5 + x) = 6/11 ⇒ 11(2 + x) = 6(5 + x) ⇒ 22 + 11x = 30 + 6x ⇒ 11x – 6x = 30 – 22 ⇒ 5x = 8 ⇒ x = 8/5 8/5 should be subtracted Reply
Answer:
Question No 1 :-
[tex]\longrightarrow[/tex] If (10x + 3y) : (5x + 2y) = 9 : 5, let us show that (2x + y) : (x + 2y) = 11 : 13.
Given :–
[tex]\mapsto[/tex] [tex]\sf (10x + 3y) : (5x + 2y) = 9 : 5.[/tex]
Show That :
[tex]\mapsto[/tex] [tex]\sf (2x + y) : (x + 2y) = 11 : 13.[/tex]
Solution :-
[tex]\implies[/tex] [tex]\sf 10x + 3y : 5x + 2y = 9 : 5[/tex]
Then, we can write as :
[tex]\implies[/tex] [tex]\sf \dfrac{10x + 3y}{5x + 2y} =\: \dfrac{9}{5}[/tex]
By doing cross multiplication we get,
[tex]\implies[/tex] [tex]\sf 5(10x + 3y) =\: 9(5x + 2y)[/tex]
[tex]\implies[/tex] [tex]\sf 50x + 15y =\: 45x + 18y[/tex]
[tex]\implies[/tex] [tex]\sf 50x – 45x =\: 18y – 15y[/tex]
[tex]\implies[/tex] [tex]\sf 5x =\: 3y[/tex]
[tex]\implies[/tex] [tex]\sf \dfrac{x}{y} =\: \dfrac{3}{5}[/tex]
Let,
[tex]\longmapsto[/tex] [tex]\sf \dfrac{x}{y} =\: \dfrac{3}{5} =\: k\: [where\: k \neq 0][/tex]
Then,
➲ [tex]\sf x =\: 3k[/tex]
➲ [tex]\sf y =\: 5k[/tex]
Now by taking L.H.S = (2x + y) : (x + 2y)
↦ [tex]\sf (2 \times 3k + 5k) : (3k + 2 \times 5k)[/tex]
↦ [tex]\sf (6k + 5k) : (3k + 10k)[/tex]
↦ [tex]\sf 11{\cancel{k}} : 13{\cancel{k}}[/tex]
➠ [tex]\bold{\red{11 : 13}}[/tex] = R.H.S
[tex]\leadsto[/tex] [tex]\sf\boxed{\bold{\pink{(PROVED)}}}[/tex]
_______________________________________
Question No 2 :-
[tex]\longrightarrow[/tex] Let us calculate what term should be added to both terms of the ratio 2 : 5 to make the ratio 6 : 11.
Solution :-
Let, the number should be added be x
Now, according to the question,
⇒ [tex]\sf \dfrac{2 + x}{5 + x} =\: \dfrac{6}{11}[/tex]
By doing cross multiplication we get,
⇒ [tex]\sf 11(2 + x) =\: 6(5 + x)[/tex]
⇒ [tex]\sf 22 + 11x =\: 30 + 6x[/tex]
⇒ [tex]\sf 11x – 6x =\: 30 – 22[/tex]
⇒ [tex]\sf 5x =\: 8[/tex]
➠ [tex]\sf\bold{\red{x =\: \dfrac{8}{5}}}[/tex]
[tex]\therefore[/tex] [tex]\sf\bold{\dfrac{8}{5}}[/tex] is should be added to the number.
Answer:
11/13 and 8/5
Step-by-step explanation:
[tex]\implies \sf{\dfrac{10x+3y}{5x+2y} = \dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{10x\frac{y}{y} +3y}{5x\frac{y}{y}+2y}=\dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{y\big(10\frac{x}{y}+3\big)}{y\big(5\frac{x}{y}+2\big)}=\dfrac{9}{5} }[/tex]
Let [tex]\dfrac{x}{y}=k[/tex],
[tex]\implies\sf{\dfrac{10k+3}{5k+2}=\dfrac{9}{5}} \\\\\implies\sf{5(10k+3)=9(5k+2) }\\\\\implies\sf{k=\dfrac{3}{5}}[/tex]
Hence,
[tex]\implies \sf{\dfrac{2x+y}{x+2y} }\\\\\\\implies \sf{\dfrac{2x\frac{y}{y} +y}{x\frac{y}{y}+2y} }\\\\\\\implies \sf{\dfrac{y\big(2\frac{x}{y}+1\big)}{y\big(\frac{x}{y}+2\big)} }[/tex]
[tex]\implies\sf{\dfrac{2k+1}{k+2} =\dfrac{2\big(\frac{3}{5}\big)+1}{\frac{3}{5}+2} }\\\\\implies\sf{ \dfrac{11}{13} }[/tex]
Question 2:
Let the x should be added,
⇒ (2 + x)/(5 + x) = 6/11
⇒ 11(2 + x) = 6(5 + x)
⇒ 22 + 11x = 30 + 6x
⇒ 11x – 6x = 30 – 22
⇒ 5x = 8
⇒ x = 8/5
8/5 should be subtracted